organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o385-o386

5-(4-Fluoro­phen­yl)-3-(4-methyl­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bChemical Industries Division, National Research Centre, Dokki, 12622, Giza, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 February 2013; accepted 12 February 2013; online 16 February 2013)

The central pyrazole ring in the title compound, C17H16FN3S, adopts an envelope conformation with the methine C atom bearing the 4-fluoro­phenyl substituent as the flap atom. Whereas the tolyl ring is slightly twisted out of the least-squares plane through the pyrazole ring [dihedral angle = 13.51 (11)°], the fluoro­benzene ring is almost perpendicular [dihedral angle = 80.21 (11)°]. The thio­amide group is almost coplanar with the N—N bond of the ring [N—N—C—N torsion angle = 1.2 (3)°] and the amine group forms an intra­molecular hydrogen bond with a ring N atom. In the crystal, supra­molecular double layers in the bc plane are formed via N—H⋯S, N—H⋯F and C—H⋯F inter­actions.

Related literature

For the biological activity of pyrazolin-1-yl­thia­zoles, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.], 2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Chimenti et al. (2010[Chimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M. & Orallo, F. (2010). Eur. J. Med. Chem. 45, 800-804.]). For related structures, see: Nonthason et al. (2011[Nonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501-o3502.]); Chantra­promma et al. (2012[Chantrapromma, S., Nonthason, P., Suwunwong, T. & Fun, H.-K. (2012). Acta Cryst. E68, o830-o831.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16FN3S

  • Mr = 313.39

  • Monoclinic, P 21 /c

  • a = 14.4154 (10) Å

  • b = 11.3197 (9) Å

  • c = 9.5575 (8) Å

  • β = 103.991 (8)°

  • V = 1513.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.772, Tmax = 1.000

  • 9303 measured reflections

  • 3500 independent reflections

  • 2370 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.04

  • 3500 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯N2 0.88 2.23 2.611 (3) 106
N3—H31⋯F1i 0.88 2.41 3.255 (2) 162
N3—H32⋯S1ii 0.88 2.83 3.538 (2) 138
C16—H16B⋯F1iii 0.96 2.55 3.478 (3) 163
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was investigated crystallographically in connection with the established biological activities exhibited by pyrazolin-1-ylthiazoles (Abdel-Wahab et al., 2012; Abdel-Wahab et al., 2009; Chimenti et al., 2010).

The central pyrazolyl ring in (I), Fig. 1, adopts an envelope conformation with the methine-C7 atom being the flap atom. The tolyl ring is slightly twisted out of the least-squares plane through the pyrazolyl ring, forming a dihedral angle of 13.51 (11)°. By contrast, the fluorobenzene ring is almost perpendicular to the five-membered ring [dihedral angle = 80.21 (11)°]. Finally, the thioamide residue is co-planar with the N2—N1—C17—N3 torsion angle being 1.2 (3)°; the amine group is orientated towards the ring-N2 atom, forming a hydrogen bond, Table 1. Similar conformations have been observed in related structures bearing two six-membered rings (Nonthason et al., 2011; Chantrapromma et al., 2012).

The F atom proves to be pivotal in providing stability to the crystal structure of (I). Thus, in addition to forming an intramolecular N—H···N2 hydrogen bond, the amine-H31 atom forms a hydrogen bond to the F1 atom, Table 1. The second amine-H32 atom hydrogen bonds to a thione so that a supramolecular chain along the c axis ensues, Fig. 2. Chains stack along the b axis to form a row and centrosymmetrically related rows inter-digitate along the a axis allowing for the formation methylene-C16—H···F1 interactions and, therefore, double layers, Fig. 2.

Related literature top

For the biological activity of pyrazolin-1-ylthiazoles, see: Abdel-Wahab et al. (2009, 2012); Chimenti et al. (2010). For related structures, see: Nonthason et al. (2011); Chantrapromma et al. (2012).

Experimental top

A mixture of 5-(4-fluorophenyl)-3-p-tolyl-4,5-dihydro-1H-pyrazole-1-carbothioamide (0.31 g, 0.001 M) and 2-bromo-1-(4-chlorophenyl)ethanone (0.23 g, 0.001 M) in anhydrous ethanol (30 ml) was heated under reflux for about 4 h. The resultant solid was filtered and dried. Re-crystallization was by slow evaporation of DMF solution of (I) which yielded colourless crystals in 61% yield. M.pt: 513–514 K.

Refinement top

Nitrogen- and carbon-bound H-atoms were placed in calculated positions (N—H = 0.88 Å, and C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(N,C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along the c axis in (I) mediated by N—H···S and N—H···F hydrogen bonds, shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the c axis. The N—H···S, N—H···F and C—H···F interactions are shown as orange, blue and pink dashed lines, respectively.
5-(4-Fluorophenyl)-3-(4-methylphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C17H16FN3SF(000) = 656
Mr = 313.39Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 14.4154 (10) Åθ = 2.9–27.5°
b = 11.3197 (9) ŵ = 0.22 mm1
c = 9.5575 (8) ÅT = 295 K
β = 103.991 (8)°Prism, colourless
V = 1513.3 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3500 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2370 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1817
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1014
Tmin = 0.772, Tmax = 1.000l = 1212
9303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2973P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H16FN3SV = 1513.3 (2) Å3
Mr = 313.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4154 (10) ŵ = 0.22 mm1
b = 11.3197 (9) ÅT = 295 K
c = 9.5575 (8) Å0.30 × 0.20 × 0.10 mm
β = 103.991 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3500 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2370 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 1.000Rint = 0.038
9303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
3500 reflectionsΔρmin = 0.26 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48991 (4)0.33372 (5)0.33938 (6)0.04739 (19)
F10.76993 (11)0.35963 (12)0.10409 (14)0.0659 (4)
N10.63664 (12)0.46879 (14)0.46526 (17)0.0384 (4)
N20.71143 (11)0.50005 (15)0.58117 (17)0.0391 (4)
N30.60198 (14)0.32075 (15)0.60342 (19)0.0491 (5)
H310.64970.34620.67270.059*
H320.56840.25910.61810.059*
C10.73573 (16)0.40770 (19)0.0050 (2)0.0445 (5)
C20.77815 (16)0.3771 (2)0.1434 (2)0.0483 (6)
H20.83060.32660.16370.058*
C30.74165 (14)0.42262 (19)0.2528 (2)0.0435 (5)
H30.76970.40240.34790.052*
C40.66378 (13)0.49796 (17)0.2226 (2)0.0341 (4)
C50.62418 (15)0.52828 (18)0.0812 (2)0.0416 (5)
H50.57280.58040.06020.050*
C60.65938 (16)0.48273 (19)0.0307 (2)0.0469 (5)
H60.63200.50250.12620.056*
C70.62560 (14)0.55094 (17)0.3424 (2)0.0376 (5)
H70.55840.57360.30660.045*
C80.68480 (15)0.65640 (18)0.4168 (2)0.0406 (5)
H8A0.72670.68650.35940.049*
H8B0.64390.71980.43470.049*
C90.74100 (14)0.60325 (18)0.5553 (2)0.0378 (5)
C100.82031 (14)0.65987 (18)0.6583 (2)0.0381 (5)
C110.87678 (15)0.5981 (2)0.7726 (2)0.0486 (6)
H110.86580.51790.78260.058*
C120.94914 (17)0.6537 (2)0.8718 (3)0.0526 (6)
H120.98670.61010.94700.063*
C130.96669 (15)0.7734 (2)0.8614 (2)0.0470 (5)
C140.91224 (16)0.8339 (2)0.7453 (3)0.0519 (6)
H140.92430.91360.73420.062*
C150.83985 (15)0.7787 (2)0.6447 (2)0.0470 (5)
H150.80410.82160.56730.056*
C161.04181 (18)0.8345 (2)0.9752 (3)0.0673 (8)
H16A1.07510.89100.93030.101*
H16B1.08640.77721.02640.101*
H16C1.01190.87441.04140.101*
C170.58067 (14)0.37547 (17)0.4763 (2)0.0365 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0422 (3)0.0508 (3)0.0468 (3)0.0061 (3)0.0063 (2)0.0054 (3)
F10.0882 (10)0.0730 (9)0.0427 (8)0.0155 (8)0.0279 (7)0.0051 (7)
N10.0401 (9)0.0438 (10)0.0305 (8)0.0056 (8)0.0071 (7)0.0003 (7)
N20.0387 (9)0.0462 (10)0.0315 (9)0.0038 (8)0.0066 (7)0.0025 (8)
N30.0545 (11)0.0474 (10)0.0437 (10)0.0086 (9)0.0088 (9)0.0077 (8)
C10.0549 (13)0.0448 (12)0.0370 (11)0.0018 (11)0.0170 (10)0.0035 (10)
C20.0448 (12)0.0556 (13)0.0442 (12)0.0135 (11)0.0099 (10)0.0022 (11)
C30.0438 (11)0.0547 (13)0.0296 (10)0.0095 (11)0.0043 (9)0.0018 (10)
C40.0342 (10)0.0357 (10)0.0315 (10)0.0021 (9)0.0062 (8)0.0008 (8)
C50.0433 (11)0.0431 (11)0.0346 (11)0.0075 (10)0.0020 (9)0.0040 (9)
C60.0594 (14)0.0487 (12)0.0283 (10)0.0028 (11)0.0023 (10)0.0040 (9)
C70.0360 (10)0.0428 (11)0.0325 (10)0.0030 (9)0.0056 (8)0.0044 (9)
C80.0455 (11)0.0403 (11)0.0360 (11)0.0006 (10)0.0100 (9)0.0010 (9)
C90.0370 (10)0.0422 (11)0.0359 (10)0.0003 (10)0.0124 (9)0.0027 (9)
C100.0362 (10)0.0427 (11)0.0372 (11)0.0007 (9)0.0124 (9)0.0038 (9)
C110.0509 (13)0.0447 (12)0.0469 (13)0.0063 (11)0.0052 (11)0.0013 (10)
C120.0521 (13)0.0542 (14)0.0449 (13)0.0011 (12)0.0010 (11)0.0012 (11)
C130.0385 (11)0.0510 (13)0.0509 (13)0.0004 (10)0.0098 (10)0.0134 (11)
C140.0434 (12)0.0413 (12)0.0695 (16)0.0045 (11)0.0106 (12)0.0052 (11)
C150.0423 (12)0.0465 (12)0.0513 (13)0.0009 (10)0.0093 (10)0.0026 (11)
C160.0527 (14)0.0653 (16)0.0745 (18)0.0040 (13)0.0025 (13)0.0231 (14)
C170.0384 (10)0.0378 (11)0.0365 (11)0.0033 (9)0.0151 (9)0.0034 (9)
Geometric parameters (Å, º) top
S1—C171.679 (2)C7—C81.538 (3)
F1—C11.369 (2)C7—H70.9800
N1—C171.349 (2)C8—C91.501 (3)
N1—N21.392 (2)C8—H8A0.9700
N1—C71.476 (2)C8—H8B0.9700
N2—C91.288 (3)C9—C101.464 (3)
N3—C171.332 (2)C10—C111.383 (3)
N3—H310.8800C10—C151.386 (3)
N3—H320.8800C11—C121.381 (3)
C1—C21.361 (3)C11—H110.9300
C1—C61.367 (3)C12—C131.386 (3)
C2—C31.379 (3)C12—H120.9300
C2—H20.9300C13—C141.377 (3)
C3—C41.383 (3)C13—C161.505 (3)
C3—H30.9300C14—C151.385 (3)
C4—C51.377 (3)C14—H140.9300
C4—C71.509 (3)C15—H150.9300
C5—C61.389 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C17—N1—N2119.99 (16)C9—C8—H8B111.3
C17—N1—C7127.16 (16)C7—C8—H8B111.3
N2—N1—C7112.76 (15)H8A—C8—H8B109.2
C9—N2—N1107.83 (16)N2—C9—C10120.57 (18)
C17—N3—H31120.0N2—C9—C8113.58 (17)
C17—N3—H32120.0C10—C9—C8125.81 (18)
H31—N3—H32120.0C11—C10—C15118.05 (19)
C2—C1—F1118.6 (2)C11—C10—C9121.63 (19)
C2—C1—C6123.1 (2)C15—C10—C9120.31 (19)
F1—C1—C6118.25 (19)C12—C11—C10121.0 (2)
C1—C2—C3118.5 (2)C12—C11—H11119.5
C1—C2—H2120.7C10—C11—H11119.5
C3—C2—H2120.7C11—C12—C13121.1 (2)
C2—C3—C4120.74 (19)C11—C12—H12119.4
C2—C3—H3119.6C13—C12—H12119.4
C4—C3—H3119.6C14—C13—C12117.8 (2)
C5—C4—C3118.76 (18)C14—C13—C16121.6 (2)
C5—C4—C7120.31 (17)C12—C13—C16120.6 (2)
C3—C4—C7120.86 (17)C13—C14—C15121.5 (2)
C4—C5—C6121.39 (19)C13—C14—H14119.3
C4—C5—H5119.3C15—C14—H14119.3
C6—C5—H5119.3C14—C15—C10120.6 (2)
C1—C6—C5117.44 (19)C14—C15—H15119.7
C1—C6—H6121.3C10—C15—H15119.7
C5—C6—H6121.3C13—C16—H16A109.5
N1—C7—C4111.36 (16)C13—C16—H16B109.5
N1—C7—C8100.38 (15)H16A—C16—H16B109.5
C4—C7—C8113.31 (16)C13—C16—H16C109.5
N1—C7—H7110.5H16A—C16—H16C109.5
C4—C7—H7110.5H16B—C16—H16C109.5
C8—C7—H7110.5N3—C17—N1115.16 (18)
C9—C8—C7102.56 (16)N3—C17—S1122.98 (16)
C9—C8—H8A111.3N1—C17—S1121.85 (15)
C7—C8—H8A111.3
C17—N1—N2—C9167.33 (17)N1—N2—C9—C10179.64 (16)
C7—N1—N2—C99.5 (2)N1—N2—C9—C82.3 (2)
F1—C1—C2—C3177.94 (19)C7—C8—C9—N212.1 (2)
C6—C1—C2—C30.9 (3)C7—C8—C9—C10169.92 (18)
C1—C2—C3—C40.2 (3)N2—C9—C10—C1111.6 (3)
C2—C3—C4—C51.0 (3)C8—C9—C10—C11170.55 (19)
C2—C3—C4—C7178.1 (2)N2—C9—C10—C15167.37 (19)
C3—C4—C5—C61.5 (3)C8—C9—C10—C1510.5 (3)
C7—C4—C5—C6178.58 (19)C15—C10—C11—C121.4 (3)
C2—C1—C6—C50.4 (3)C9—C10—C11—C12177.6 (2)
F1—C1—C6—C5178.42 (19)C10—C11—C12—C130.9 (4)
C4—C5—C6—C10.8 (3)C11—C12—C13—C142.7 (4)
C17—N1—C7—C479.3 (2)C11—C12—C13—C16176.3 (2)
N2—N1—C7—C4104.12 (18)C12—C13—C14—C152.3 (3)
C17—N1—C7—C8160.42 (18)C16—C13—C14—C15176.7 (2)
N2—N1—C7—C816.1 (2)C13—C14—C15—C100.1 (3)
C5—C4—C7—N1149.56 (18)C11—C10—C15—C141.8 (3)
C3—C4—C7—N133.4 (2)C9—C10—C15—C14177.28 (19)
C5—C4—C7—C898.2 (2)N2—N1—C17—N31.2 (3)
C3—C4—C7—C878.8 (2)C7—N1—C17—N3175.12 (18)
N1—C7—C8—C915.56 (19)N2—N1—C17—S1179.70 (14)
C4—C7—C8—C9103.26 (18)C7—N1—C17—S14.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N20.882.232.611 (3)106
N3—H31···F1i0.882.413.255 (2)162
N3—H32···S1ii0.882.833.538 (2)138
C16—H16B···F1iii0.962.553.478 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H16FN3S
Mr313.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.4154 (10), 11.3197 (9), 9.5575 (8)
β (°) 103.991 (8)
V3)1513.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.772, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9303, 3500, 2370
Rint0.038
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.04
No. of reflections3500
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N20.882.232.611 (3)106
N3—H31···F1i0.882.413.255 (2)162
N3—H32···S1ii0.882.833.538 (2)138
C16—H16B···F1iii0.962.553.478 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChantrapromma, S., Nonthason, P., Suwunwong, T. & Fun, H.-K. (2012). Acta Cryst. E68, o830–o831.  CSD CrossRef IUCr Journals Google Scholar
First citationChimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M. & Orallo, F. (2010). Eur. J. Med. Chem. 45, 800–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501–o3502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o385-o386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds