organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o428-o429

(2E)-1-(2,4-Di­methyl­quinolin-3-yl)-3-phenyl­prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani–K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 February 2013; accepted 19 February 2013; online 23 February 2013)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C20H17NO, which differ in the orientation of the terminal phenyl ring with respect to the quinoline ring [the dihedral angles are 75.72 (11) and 84.53 (12)° for the two mol­ecules]. The conformation about each of the ethyl­ene bonds [1.329 (3) and 1.318 (3) Å] is E. The crystal structure features a combination of C—H⋯N, C—H⋯π and ππ contacts [inter-centroid between the phenyl ring and the quinoline benzene ring is 3.6024 (19) Å], generating a three-dimensional network.

Related literature

For background details and the biological application of quinoline and quinoline chalcones, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.]); Kalanithi et al. (2012[Kalanithi, M., Rajarajan, M., Tharmaraj, P. & Sheela, C. D. (2012). Spectrochim. Acta A, 87, 155-162.]); Prasath et al. (2013[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62-70.]). For the structures of the isomorphous chloro- and methyl-benzene derivatives, see: see: Prasath et al. (2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796-o797.], 2012[Prasath, R., Bhavana, P. & Butcher, R. J. (2012). Acta Cryst. E68, o1501.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17NO

  • Mr = 287.35

  • Triclinic, [P \overline 1]

  • a = 11.1295 (9) Å

  • b = 11.5764 (8) Å

  • c = 13.3989 (11) Å

  • α = 96.176 (6)°

  • β = 112.900 (8)°

  • γ = 96.533 (6)°

  • V = 1558.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.764, Tmax = 1.000

  • 14138 measured reflections

  • 7191 independent reflections

  • 3395 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.190

  • S = 1.05

  • 7191 reflections

  • 401 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2 0.93 2.59 3.463 (3) 156
C7—H7CCg1i 0.96 2.86 3.662 (3) 142
C39—H39⋯Cg2ii 0.93 2.88 3.679 (3) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoline and their corresponding heterocyclic analogues are valuable intermediates in organic synthesis and exhibit a multitude of biological activities. (Prasath & Bhavana, 2012; Joshi et al., 2011). Quinoline chalcone analogues have also gained much attention due to their bioactivity such as anti-plasmodial, anti-microbial, anti-malarial and anti-cancer activities (Prasath et al., 2013; Kalanithi et al., 2012). In was in this connection, that the title compound, (I), was investigated.

Two crystallographically independent molecules comprise the asymmetric unit of (I), Fig. 1. As clearly indicated in Fig. 2, an overlay diagram of the molecules, the major difference between them is manifested in the dihedral angles formed by the ten atoms of the quinolinyl ring (r.m.s. deviations = 0.010 and 0.013 Å) and the terminal phenyl ring, i.e. 75.72 (11)° for the N1-containing molecule and 84.53 (12)° for the N2-containing molecule. The overall conformation of each molecule is therefore of the letter L. The configuration around each ethylene bond [C13C14 = 1.329 (3) Å and C33C34 = 1.318 (3) Å] is E. The overall molecular conformation found for the molecules comprising (I) match those of the chloro- (Prasath et al., 2011) and methyl-benzene (Prasath et al., 2012) analogues; the three structures are in fact isomorphous.

The three-dimensional architecture is stabilized by a combination of ethylene-C—H···N2 interactions [between the independent molecules] and C—H···π interactions between methyl-H and a C6 ring of the N1-quinolinyl residue, and between phenyl-H and the phenyl (C15–C20) ring, Table 1, along with π···π contacts between the independent molecules [inter-centroid distance = 3.6024 (19) Å, angle of inclination = 2.43 (15)°], i.e. between the C6 ring of the N1-quinolinyl residue and the phenyl (C35–C40) ring of the N2-containing molecule, Fig. 3.

Related literature top

For background details and the biological application of quinoline and quinoline chalcones, see: Joshi et al. (2011); Prasath & Bhavana (2012); Kalanithi et al. (2012); Prasath et al. (2013). For the structures of the isomorphous chloro- and methyl-benzene derivatives, see: see: Prasath et al. (2011,2012).

Experimental top

A mixture of 3-acetyl-2,4-dimethylquinoline (1.0 g, 0.005 M), benzaldehyde (530 mg, 0.005 M) and KOH (0.5 g) in distilled ethanol (50 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I) which yielded colourless prisms in 80% yield; M.pt: 421–423 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement, one reflection, i.e. (0 0 10), was removed from the final cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules in (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules in (I) with the N1-containing molecule illustrated in red. The molecules are overlaid so that the pyridyl rings are superimposed.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I). The C—H···N, C—H···O, C—H···π, and π···π interactions are shown as blue, orange and purple dashed lines, respectively.
(2E)-1-(2,4-Dimethylquinolin-3-yl)-3-phenylprop-2-en-1-one top
Crystal data top
C20H17NOZ = 4
Mr = 287.35F(000) = 608
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1295 (9) ÅCell parameters from 2234 reflections
b = 11.5764 (8) Åθ = 2.9–27.5°
c = 13.3989 (11) ŵ = 0.08 mm1
α = 96.176 (6)°T = 295 K
β = 112.900 (8)°Prism, colourless
γ = 96.533 (6)°0.30 × 0.20 × 0.10 mm
V = 1558.0 (2) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7191 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3395 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1412
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.764, Tmax = 1.000l = 1717
14138 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.2605P]
where P = (Fo2 + 2Fc2)/3
7191 reflections(Δ/σ)max = 0.001
401 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H17NOγ = 96.533 (6)°
Mr = 287.35V = 1558.0 (2) Å3
Triclinic, P1Z = 4
a = 11.1295 (9) ÅMo Kα radiation
b = 11.5764 (8) ŵ = 0.08 mm1
c = 13.3989 (11) ÅT = 295 K
α = 96.176 (6)°0.30 × 0.20 × 0.10 mm
β = 112.900 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7191 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3395 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 1.000Rint = 0.031
14138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
7191 reflectionsΔρmin = 0.16 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2858 (2)0.45826 (19)0.85864 (17)0.0966 (7)
O20.5540 (2)1.20890 (18)0.82791 (16)0.0943 (7)
N10.1744 (2)0.77004 (18)0.71898 (16)0.0621 (5)
N20.5102 (2)0.83929 (19)0.69801 (17)0.0668 (6)
C10.1282 (2)0.7394 (2)0.60732 (19)0.0551 (6)
C20.0550 (3)0.8160 (2)0.5418 (2)0.0696 (7)
H20.04010.88440.57520.084*
C30.0063 (3)0.7909 (3)0.4306 (2)0.0789 (8)
H30.04060.84260.38840.095*
C40.0262 (3)0.6876 (3)0.3792 (2)0.0818 (9)
H40.00890.67030.30290.098*
C50.0965 (3)0.6123 (3)0.4400 (2)0.0710 (7)
H50.10950.54420.40480.085*
C60.1501 (2)0.6361 (2)0.55593 (18)0.0543 (6)
C70.2529 (3)0.4502 (2)0.5729 (2)0.0774 (8)
H7A0.29660.40600.62920.116*
H7B0.30850.47040.53550.116*
H7C0.17080.40340.52130.116*
C80.2260 (2)0.5615 (2)0.62422 (19)0.0555 (6)
C90.2710 (2)0.5937 (2)0.73606 (19)0.0567 (6)
C100.2425 (2)0.6994 (2)0.78072 (19)0.0607 (6)
C110.2909 (3)0.7357 (3)0.9032 (2)0.0895 (10)
H11A0.27050.81230.91860.134*
H11B0.38490.73850.93720.134*
H11C0.24800.67960.93180.134*
C120.3442 (3)0.5159 (2)0.8141 (2)0.0686 (7)
C130.4819 (3)0.5084 (2)0.8351 (2)0.0721 (8)
H130.52030.45160.87520.086*
C140.5556 (2)0.5778 (2)0.80014 (18)0.0606 (6)
H140.51680.63710.76440.073*
C150.6909 (2)0.5715 (2)0.81151 (18)0.0591 (6)
C160.7526 (3)0.6520 (2)0.7698 (2)0.0729 (7)
H160.70950.71200.73920.088*
C170.8772 (3)0.6449 (3)0.7728 (2)0.0861 (9)
H170.91660.69930.74370.103*
C180.9427 (3)0.5574 (3)0.8188 (3)0.0898 (10)
H181.02670.55250.82130.108*
C190.8834 (3)0.4780 (3)0.8606 (2)0.0908 (10)
H190.92750.41870.89160.109*
C200.7590 (3)0.4839 (3)0.8577 (2)0.0779 (8)
H200.72050.42880.88690.093*
C210.4459 (2)0.8296 (2)0.5867 (2)0.0631 (7)
C220.4524 (3)0.7285 (3)0.5211 (2)0.0821 (9)
H220.49840.67130.55460.099*
C230.3929 (3)0.7139 (3)0.4106 (3)0.0962 (11)
H230.39860.64700.36860.115*
C240.3232 (3)0.7981 (4)0.3590 (2)0.0924 (11)
H240.28230.78720.28270.111*
C250.3142 (3)0.8969 (3)0.4195 (2)0.0792 (9)
H250.26750.95270.38380.095*
C260.3752 (2)0.9158 (2)0.53583 (18)0.0595 (7)
C270.2962 (3)1.1107 (3)0.5540 (2)0.0836 (9)
H27A0.30501.17320.61090.125*
H27B0.20441.07720.51360.125*
H27C0.33121.14150.50530.125*
C280.3719 (2)1.0167 (2)0.60481 (19)0.0591 (6)
C290.4386 (2)1.0258 (2)0.71629 (18)0.0569 (6)
C300.5075 (3)0.9341 (2)0.76044 (19)0.0629 (7)
C310.5793 (3)0.9411 (3)0.8827 (2)0.0888 (9)
H31A0.61480.87010.89800.133*
H31B0.51880.95040.91690.133*
H31C0.65021.00740.91130.133*
C320.4519 (3)1.1361 (2)0.7940 (2)0.0674 (7)
C330.3464 (3)1.1558 (2)0.8286 (2)0.0712 (7)
H330.35221.23010.86600.085*
C340.2431 (3)1.0756 (2)0.81075 (18)0.0612 (6)
H340.23771.00220.77200.073*
C350.1350 (3)1.0909 (2)0.84622 (18)0.0606 (6)
C360.0303 (3)0.9987 (3)0.8156 (2)0.0750 (8)
H360.03060.92860.77490.090*
C370.0747 (3)1.0094 (3)0.8446 (3)0.0931 (10)
H370.14580.94770.82150.112*
C380.0734 (4)1.1121 (3)0.9081 (3)0.0946 (10)
H380.14331.11950.92860.114*
C390.0312 (4)1.2033 (3)0.9408 (2)0.0876 (9)
H390.03231.27220.98400.105*
C400.1341 (3)1.1932 (2)0.9103 (2)0.0736 (8)
H400.20421.25570.93270.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0916 (14)0.0927 (16)0.1211 (16)0.0181 (12)0.0506 (13)0.0510 (13)
O20.1028 (15)0.0754 (14)0.1009 (14)0.0096 (12)0.0510 (12)0.0128 (11)
N10.0681 (13)0.0553 (13)0.0597 (12)0.0130 (10)0.0248 (10)0.0013 (10)
N20.0763 (14)0.0619 (14)0.0660 (13)0.0166 (11)0.0325 (11)0.0076 (10)
C10.0521 (13)0.0514 (14)0.0623 (14)0.0077 (11)0.0249 (12)0.0058 (11)
C20.0700 (17)0.0669 (18)0.0777 (18)0.0212 (14)0.0328 (14)0.0148 (14)
C30.0736 (18)0.093 (2)0.0800 (19)0.0274 (16)0.0336 (16)0.0295 (17)
C40.0781 (19)0.109 (3)0.0582 (15)0.0156 (18)0.0277 (15)0.0150 (17)
C50.0753 (18)0.0787 (19)0.0593 (15)0.0157 (15)0.0303 (14)0.0017 (14)
C60.0508 (13)0.0525 (15)0.0597 (14)0.0049 (11)0.0259 (11)0.0005 (11)
C70.0805 (18)0.0576 (17)0.0913 (19)0.0148 (14)0.0355 (15)0.0045 (14)
C80.0510 (13)0.0488 (14)0.0660 (15)0.0046 (11)0.0272 (12)0.0023 (11)
C90.0545 (14)0.0482 (14)0.0642 (14)0.0032 (11)0.0228 (12)0.0070 (11)
C100.0610 (15)0.0572 (16)0.0604 (14)0.0056 (12)0.0246 (12)0.0001 (12)
C110.102 (2)0.088 (2)0.0618 (16)0.0105 (18)0.0234 (16)0.0080 (14)
C120.0706 (18)0.0555 (17)0.0766 (17)0.0064 (13)0.0274 (14)0.0124 (13)
C130.0694 (17)0.0611 (17)0.0841 (18)0.0190 (14)0.0235 (14)0.0271 (14)
C140.0642 (16)0.0484 (15)0.0606 (14)0.0123 (12)0.0167 (12)0.0039 (11)
C150.0572 (15)0.0506 (15)0.0583 (14)0.0127 (12)0.0134 (12)0.0021 (11)
C160.0697 (18)0.0649 (18)0.0825 (18)0.0135 (14)0.0307 (15)0.0043 (14)
C170.077 (2)0.084 (2)0.101 (2)0.0089 (18)0.0449 (17)0.0033 (17)
C180.0663 (19)0.093 (3)0.091 (2)0.0177 (19)0.0217 (17)0.0255 (18)
C190.078 (2)0.084 (2)0.091 (2)0.0321 (18)0.0123 (18)0.0010 (18)
C200.0750 (19)0.0688 (19)0.0775 (17)0.0197 (15)0.0167 (15)0.0082 (14)
C210.0641 (16)0.0623 (17)0.0658 (16)0.0015 (13)0.0346 (13)0.0000 (13)
C220.086 (2)0.073 (2)0.087 (2)0.0064 (16)0.0429 (17)0.0119 (15)
C230.091 (2)0.100 (3)0.090 (2)0.003 (2)0.045 (2)0.030 (2)
C240.086 (2)0.118 (3)0.0609 (17)0.009 (2)0.0319 (16)0.0170 (19)
C250.0693 (18)0.100 (2)0.0631 (16)0.0008 (16)0.0279 (14)0.0053 (16)
C260.0583 (15)0.0656 (17)0.0552 (14)0.0017 (13)0.0287 (12)0.0037 (12)
C270.092 (2)0.081 (2)0.0828 (18)0.0267 (17)0.0344 (16)0.0262 (16)
C280.0580 (14)0.0590 (16)0.0655 (15)0.0072 (12)0.0309 (12)0.0124 (12)
C290.0636 (15)0.0546 (15)0.0568 (14)0.0074 (12)0.0303 (12)0.0070 (11)
C300.0706 (16)0.0618 (17)0.0594 (14)0.0116 (13)0.0302 (13)0.0082 (12)
C310.105 (2)0.096 (2)0.0651 (17)0.0278 (18)0.0304 (16)0.0164 (15)
C320.0830 (19)0.0581 (17)0.0673 (15)0.0107 (15)0.0378 (15)0.0082 (13)
C330.091 (2)0.0516 (16)0.0747 (16)0.0166 (15)0.0388 (15)0.0007 (12)
C340.0803 (17)0.0479 (14)0.0583 (14)0.0184 (13)0.0299 (13)0.0065 (11)
C350.0791 (17)0.0566 (16)0.0535 (13)0.0240 (14)0.0305 (13)0.0133 (11)
C360.094 (2)0.0649 (18)0.0807 (18)0.0198 (16)0.0505 (16)0.0073 (14)
C370.099 (2)0.088 (2)0.112 (2)0.0121 (19)0.066 (2)0.0089 (19)
C380.114 (3)0.102 (3)0.103 (2)0.046 (2)0.071 (2)0.024 (2)
C390.123 (3)0.076 (2)0.0821 (19)0.047 (2)0.053 (2)0.0120 (16)
C400.090 (2)0.0636 (18)0.0726 (17)0.0267 (15)0.0361 (16)0.0086 (13)
Geometric parameters (Å, º) top
O1—C121.229 (3)C19—C201.379 (4)
O2—C321.228 (3)C19—H190.9300
N1—C101.315 (3)C20—H200.9300
N1—C11.369 (3)C21—C261.409 (4)
N2—C301.317 (3)C21—C221.413 (4)
N2—C211.365 (3)C22—C231.349 (4)
C1—C61.408 (3)C22—H220.9300
C1—C21.413 (3)C23—C241.390 (5)
C2—C31.356 (4)C23—H230.9300
C2—H20.9300C24—C251.366 (4)
C3—C41.398 (4)C24—H240.9300
C3—H30.9300C25—C261.417 (3)
C4—C51.360 (4)C25—H250.9300
C4—H40.9300C26—C281.423 (3)
C5—C61.412 (3)C27—C281.510 (4)
C5—H50.9300C27—H27A0.9600
C6—C81.426 (3)C27—H27B0.9600
C7—C81.510 (3)C27—H27C0.9600
C7—H7A0.9600C28—C291.371 (3)
C7—H7B0.9600C29—C301.426 (4)
C7—H7C0.9600C29—C321.512 (3)
C8—C91.374 (3)C30—C311.506 (3)
C9—C101.426 (3)C31—H31A0.9600
C9—C121.508 (3)C31—H31B0.9600
C10—C111.507 (3)C31—H31C0.9600
C11—H11A0.9600C32—C331.451 (4)
C11—H11B0.9600C33—C341.318 (3)
C11—H11C0.9600C33—H330.9300
C12—C131.461 (4)C34—C351.476 (4)
C13—C141.329 (3)C34—H340.9300
C13—H130.9300C35—C361.384 (4)
C14—C151.464 (3)C35—C401.390 (3)
C14—H140.9300C36—C371.380 (4)
C15—C161.385 (3)C36—H360.9300
C15—C201.390 (3)C37—C381.381 (4)
C16—C171.384 (4)C37—H370.9300
C16—H160.9300C38—C391.373 (4)
C17—C181.374 (4)C38—H380.9300
C17—H170.9300C39—C401.369 (4)
C18—C191.362 (4)C39—H390.9300
C18—H180.9300C40—H400.9300
C10—N1—C1118.1 (2)C15—C20—H20119.8
C30—N2—C21118.5 (2)N2—C21—C26122.9 (2)
N1—C1—C6123.2 (2)N2—C21—C22117.6 (3)
N1—C1—C2117.6 (2)C26—C21—C22119.5 (2)
C6—C1—C2119.2 (2)C23—C22—C21120.9 (3)
C3—C2—C1120.6 (3)C23—C22—H22119.5
C3—C2—H2119.7C21—C22—H22119.5
C1—C2—H2119.7C22—C23—C24120.4 (3)
C2—C3—C4120.3 (3)C22—C23—H23119.8
C2—C3—H3119.8C24—C23—H23119.8
C4—C3—H3119.8C25—C24—C23120.5 (3)
C5—C4—C3120.4 (3)C25—C24—H24119.8
C5—C4—H4119.8C23—C24—H24119.8
C3—C4—H4119.8C24—C25—C26121.0 (3)
C4—C5—C6120.9 (3)C24—C25—H25119.5
C4—C5—H5119.6C26—C25—H25119.5
C6—C5—H5119.6C21—C26—C25117.8 (3)
C1—C6—C5118.5 (2)C21—C26—C28117.7 (2)
C1—C6—C8118.0 (2)C25—C26—C28124.5 (3)
C5—C6—C8123.6 (2)C28—C27—H27A109.5
C8—C7—H7A109.5C28—C27—H27B109.5
C8—C7—H7B109.5H27A—C27—H27B109.5
H7A—C7—H7B109.5C28—C27—H27C109.5
C8—C7—H7C109.5H27A—C27—H27C109.5
H7A—C7—H7C109.5H27B—C27—H27C109.5
H7B—C7—H7C109.5C29—C28—C26118.7 (2)
C9—C8—C6117.9 (2)C29—C28—C27121.8 (2)
C9—C8—C7122.2 (2)C26—C28—C27119.6 (2)
C6—C8—C7119.9 (2)C28—C29—C30119.7 (2)
C8—C9—C10120.1 (2)C28—C29—C32121.7 (2)
C8—C9—C12121.5 (2)C30—C29—C32118.4 (2)
C10—C9—C12118.3 (2)N2—C30—C29122.5 (2)
N1—C10—C9122.7 (2)N2—C30—C31116.8 (2)
N1—C10—C11116.5 (2)C29—C30—C31120.6 (2)
C9—C10—C11120.8 (2)C30—C31—H31A109.5
C10—C11—H11A109.5C30—C31—H31B109.5
C10—C11—H11B109.5H31A—C31—H31B109.5
H11A—C11—H11B109.5C30—C31—H31C109.5
C10—C11—H11C109.5H31A—C31—H31C109.5
H11A—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5O2—C32—C33120.3 (3)
O1—C12—C13120.8 (3)O2—C32—C29118.8 (3)
O1—C12—C9119.0 (3)C33—C32—C29120.9 (2)
C13—C12—C9120.2 (2)C34—C33—C32124.5 (3)
C14—C13—C12124.0 (2)C34—C33—H33117.7
C14—C13—H13118.0C32—C33—H33117.7
C12—C13—H13118.0C33—C34—C35126.4 (2)
C13—C14—C15127.4 (2)C33—C34—H34116.8
C13—C14—H14116.3C35—C34—H34116.8
C15—C14—H14116.3C36—C35—C40118.2 (3)
C16—C15—C20117.7 (3)C36—C35—C34118.7 (2)
C16—C15—C14119.4 (2)C40—C35—C34123.0 (3)
C20—C15—C14122.8 (3)C37—C36—C35121.0 (3)
C17—C16—C15121.3 (3)C37—C36—H36119.5
C17—C16—H16119.4C35—C36—H36119.5
C15—C16—H16119.4C36—C37—C38119.6 (3)
C18—C17—C16120.0 (3)C36—C37—H37120.2
C18—C17—H17120.0C38—C37—H37120.2
C16—C17—H17120.0C39—C38—C37119.9 (3)
C19—C18—C17119.3 (3)C39—C38—H38120.1
C19—C18—H18120.4C37—C38—H38120.1
C17—C18—H18120.4C40—C39—C38120.4 (3)
C18—C19—C20121.2 (3)C40—C39—H39119.8
C18—C19—H19119.4C38—C39—H39119.8
C20—C19—H19119.4C39—C40—C35120.8 (3)
C19—C20—C15120.5 (3)C39—C40—H40119.6
C19—C20—H20119.8C35—C40—H40119.6
C10—N1—C1—C60.1 (3)C30—N2—C21—C261.0 (4)
C10—N1—C1—C2180.0 (2)C30—N2—C21—C22178.6 (2)
N1—C1—C2—C3179.9 (2)N2—C21—C22—C23179.1 (2)
C6—C1—C2—C30.1 (4)C26—C21—C22—C230.6 (4)
C1—C2—C3—C41.0 (4)C21—C22—C23—C240.3 (5)
C2—C3—C4—C51.2 (4)C22—C23—C24—C250.1 (5)
C3—C4—C5—C60.4 (4)C23—C24—C25—C260.2 (4)
N1—C1—C6—C5179.2 (2)N2—C21—C26—C25179.0 (2)
C2—C1—C6—C50.6 (3)C22—C21—C26—C250.6 (4)
N1—C1—C6—C81.1 (3)N2—C21—C26—C280.1 (4)
C2—C1—C6—C8179.1 (2)C22—C21—C26—C28179.5 (2)
C4—C5—C6—C10.5 (4)C24—C25—C26—C210.5 (4)
C4—C5—C6—C8179.2 (2)C24—C25—C26—C28179.2 (2)
C1—C6—C8—C91.2 (3)C21—C26—C28—C290.9 (3)
C5—C6—C8—C9179.1 (2)C25—C26—C28—C29177.9 (2)
C1—C6—C8—C7179.5 (2)C21—C26—C28—C27179.4 (2)
C5—C6—C8—C70.1 (4)C25—C26—C28—C271.8 (4)
C6—C8—C9—C100.5 (3)C26—C28—C29—C301.0 (3)
C7—C8—C9—C10179.7 (2)C27—C28—C29—C30179.3 (2)
C6—C8—C9—C12175.9 (2)C26—C28—C29—C32173.4 (2)
C7—C8—C9—C123.3 (4)C27—C28—C29—C326.3 (4)
C1—N1—C10—C90.7 (4)C21—N2—C30—C290.9 (4)
C1—N1—C10—C11179.6 (2)C21—N2—C30—C31179.8 (2)
C8—C9—C10—N10.5 (4)C28—C29—C30—N20.1 (4)
C12—C9—C10—N1177.0 (2)C32—C29—C30—N2174.5 (2)
C8—C9—C10—C11179.8 (2)C28—C29—C30—C31178.8 (2)
C12—C9—C10—C113.4 (4)C32—C29—C30—C316.6 (4)
C8—C9—C12—O1103.9 (3)C28—C29—C32—O297.8 (3)
C10—C9—C12—O172.5 (3)C30—C29—C32—O276.7 (3)
C8—C9—C12—C1375.3 (3)C28—C29—C32—C3382.5 (3)
C10—C9—C12—C13108.3 (3)C30—C29—C32—C33103.1 (3)
O1—C12—C13—C14171.9 (3)O2—C32—C33—C34169.0 (3)
C9—C12—C13—C148.9 (4)C29—C32—C33—C3410.8 (4)
C12—C13—C14—C15175.9 (2)C32—C33—C34—C35178.7 (2)
C13—C14—C15—C16179.9 (2)C33—C34—C35—C36176.9 (2)
C13—C14—C15—C203.5 (4)C33—C34—C35—C403.9 (4)
C20—C15—C16—C170.7 (4)C40—C35—C36—C372.2 (4)
C14—C15—C16—C17176.0 (2)C34—C35—C36—C37178.6 (2)
C15—C16—C17—C180.6 (4)C35—C36—C37—C382.1 (5)
C16—C17—C18—C190.3 (4)C36—C37—C38—C390.7 (5)
C17—C18—C19—C200.1 (4)C37—C38—C39—C400.4 (5)
C18—C19—C20—C150.2 (4)C38—C39—C40—C350.3 (4)
C16—C15—C20—C190.5 (4)C36—C35—C40—C391.0 (4)
C14—C15—C20—C19176.2 (2)C34—C35—C40—C39179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···N20.932.593.463 (3)156
C7—H7C···Cg1i0.962.863.662 (3)142
C39—H39···Cg2ii0.932.883.679 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC20H17NO
Mr287.35
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.1295 (9), 11.5764 (8), 13.3989 (11)
α, β, γ (°)96.176 (6), 112.900 (8), 96.533 (6)
V3)1558.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.764, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14138, 7191, 3395
Rint0.031
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.190, 1.05
No. of reflections7191
No. of parameters401
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···N20.932.593.463 (3)156
C7—H7C···Cg1i0.962.863.662 (3)142
C39—H39···Cg2ii0.932.883.679 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

PB and RP gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), India, for research grant 02 (0076)/12/EMR-II and Senior Research Fellowship (09/919/(0014)/2012 EMR-I), respectively. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS
First citationJoshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.  Web of Science CrossRef CAS
First citationKalanithi, M., Rajarajan, M., Tharmaraj, P. & Sheela, C. D. (2012). Spectrochim. Acta A, 87, 155–162.  CrossRef CAS
First citationPrasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525–530.  Web of Science CrossRef CAS
First citationPrasath, R., Bhavana, P. & Butcher, R. J. (2012). Acta Cryst. E68, o1501.  CSD CrossRef IUCr Journals
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796–o797.  Web of Science CSD CrossRef CAS IUCr Journals
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o428-o429
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds