metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-1H-1,2,3-benzotriazol-3-ium tetra­chloridoferrate(III)

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@nwnu.edu.cn

(Received 26 January 2013; accepted 6 February 2013; online 13 February 2013)

The asymmetric unit of the title salt, (C8H10N3)[FeCl4], contains one 1,3-dimethyl-1H-1,2,3-benzotriazol-3-ium cation and one tetra­chloridoferrate anion. The FeIII atom in the anion is tetra­hedrally coordinated by four Cl atoms. In the crystal, inter­actions are observed between the Cl atoms and the triazolium ring [Cl⋯centroid distances = 3.587 (3) and 3.866 (3) Å].

Related literature

For related iron complexes, see: Hay et al. (2003[Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431-434.]); Liu et al. (2000[Liu, F., John, K. D., Scott, B. L., Baker, T. R., Ott, K. C. & Tumas, W. (2000). Angew. Chem. Int. Ed. 39, 3127-3130.]); Lorenz et al. (2000[Lorenz, V., Fischer, A. & Edelmann, F. T. (2000). Z. Anorg. Allg. Chem. 626, 1728-1730.]); Shapley et al. (2003[Shapley, P. A., Bigham, W. S. & Hay, M. T. (2003). Inorg. Chim. Acta, 345, 255-260.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H10N3)[FeCl4]

  • Mr = 345.84

  • Orthorhombic, P b c a

  • a = 10.2920 (5) Å

  • b = 12.5518 (6) Å

  • c = 22.5857 (9) Å

  • V = 2917.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Oxford Diffraction SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.578, Tmax = 0.647

  • 8114 measured reflections

  • 3016 independent reflections

  • 1828 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.183

  • S = 1.05

  • 3016 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Iron-containing compounds are ubiquitous throughout the field of coordination chemistry. Recently, a variety of iron compounds have been added to the list of iron coordination complexes (Hay et al., 2003; Liu et al., 2000; Lorenz et al., 2000; Shapley et al., 2003).

In the title compound (Fig. 1), the FeIII atom in the [FeCl4]- anion is four-coordinated in a distorted tetrahedral geometry. The Cl—Fe—Cl bond angles are in the range of 108.35 (6)–111.33 (8) °, while the Fe—Cl bond lengths are in the range of 2.1634 (17)–2.1867 (14) Å. Three Cl—Fe—Cl angles are smaller than tetrahedral and the other three are greater than tetrahedral one. In the crystal, interactions between the Cl atoms and the triazolium rings are present [Cl···centroid distances = 3.587 (3) and 3.866 (3) Å].

Related literature top

For related iron complexes, see: Hay et al. (2003); Liu et al. (2000); Lorenz et al. (2000); Shapley et al. (2003).

Experimental top

FeCl3.6H2O (0.1 mmol, 27.0 mg) was dissolved in 15 ml CH3OH. To this yellow solution, one equivalent of 1,3-dimethyl-1H-benzo[1,2,3]triazolenium chlorate (0.1 mmol, 18.4 mg) was added with stirring. The mixture was filtered and held at room temperature to allow slow evaporation of solvent after stirring 30 min. Block crystals suitable for X-ray diffraction were obtained after one week (yield: 64%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 Å (CH3), and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis.
1,3-Dimethyl-1H-1,2,3-benzotriazol-3-ium tetrachloridoferrate(III) top
Crystal data top
(C8H10N3)[FeCl4]F(000) = 1384
Mr = 345.84Dx = 1.575 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1751 reflections
a = 10.2920 (5) Åθ = 3.1–28.5°
b = 12.5518 (6) ŵ = 1.74 mm1
c = 22.5857 (9) ÅT = 293 K
V = 2917.7 (2) Å3Block, yellow
Z = 80.32 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
3016 independent reflections
Radiation source: fine-focus sealed tube1828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0733 pixels mm-1θmax = 26.5°, θmin = 3.1°
ω scansh = 126
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
k = 1512
Tmin = 0.578, Tmax = 0.647l = 2828
8114 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 1.072P]
where P = (Fo2 + 2Fc2)/3
3016 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C8H10N3)[FeCl4]V = 2917.7 (2) Å3
Mr = 345.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.2920 (5) ŵ = 1.74 mm1
b = 12.5518 (6) ÅT = 293 K
c = 22.5857 (9) Å0.32 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
3016 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
1828 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.647Rint = 0.031
8114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
3016 reflectionsΔρmin = 0.39 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2130 (5)0.5085 (4)0.3377 (2)0.0934 (14)
N20.1550 (5)0.5572 (4)0.3863 (2)0.0907 (14)
N30.2259 (5)0.5203 (4)0.4309 (2)0.0912 (13)
C10.3237 (4)0.4541 (4)0.4130 (2)0.0650 (11)
C20.4177 (6)0.3997 (5)0.4452 (2)0.0927 (17)
H20.42380.40340.48630.111*
C30.5016 (6)0.3393 (5)0.4106 (3)0.0986 (17)
H30.56690.30060.42930.118*
C40.4922 (6)0.3345 (6)0.3510 (3)0.1023 (18)
H40.55220.29370.33020.123*
C50.3950 (6)0.3889 (5)0.3193 (2)0.0877 (16)
H50.38740.38450.27830.105*
C60.3140 (6)0.4478 (5)0.3524 (2)0.0823 (15)
C70.1582 (6)0.5291 (6)0.2780 (3)0.124 (3)
H7A0.13170.46300.26040.186*
H7B0.22300.56220.25350.186*
H7C0.08440.57550.28140.186*
C80.1916 (6)0.5507 (5)0.4913 (2)0.111 (2)
H8A0.12290.60230.49030.166*
H8B0.26620.58080.51060.166*
H8C0.16320.48880.51270.166*
Fe10.53140 (7)0.75129 (5)0.36820 (3)0.0621 (3)
Cl10.40700 (15)0.76662 (12)0.44622 (6)0.0934 (5)
Cl20.6707 (2)0.62448 (18)0.38165 (8)0.1478 (9)
Cl30.63300 (15)0.90130 (13)0.35368 (7)0.0997 (5)
Cl40.40818 (16)0.71994 (13)0.29142 (6)0.1007 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.089 (3)0.084 (3)0.108 (4)0.025 (3)0.029 (3)0.027 (3)
N20.086 (3)0.079 (3)0.107 (4)0.005 (3)0.020 (3)0.016 (3)
N30.094 (3)0.083 (3)0.097 (3)0.019 (3)0.010 (3)0.012 (3)
C10.064 (3)0.070 (3)0.060 (3)0.009 (2)0.001 (2)0.004 (2)
C20.105 (4)0.108 (4)0.064 (3)0.027 (4)0.012 (3)0.008 (3)
C30.100 (4)0.116 (5)0.080 (4)0.019 (4)0.001 (3)0.007 (4)
C40.097 (4)0.127 (5)0.083 (4)0.001 (4)0.002 (3)0.012 (4)
C50.105 (4)0.108 (4)0.050 (3)0.030 (3)0.009 (3)0.009 (3)
C60.089 (4)0.087 (4)0.071 (3)0.036 (3)0.003 (3)0.003 (3)
C70.127 (5)0.136 (6)0.110 (5)0.039 (4)0.062 (4)0.046 (4)
C80.130 (5)0.109 (5)0.093 (4)0.037 (4)0.042 (4)0.043 (4)
Fe10.0725 (5)0.0589 (5)0.0548 (4)0.0043 (3)0.0006 (3)0.0041 (3)
Cl10.1005 (10)0.1047 (11)0.0749 (9)0.0156 (8)0.0246 (8)0.0135 (7)
Cl20.1852 (19)0.1443 (18)0.1138 (14)0.1036 (16)0.0155 (12)0.0183 (11)
Cl30.1123 (11)0.1022 (11)0.0847 (10)0.0438 (9)0.0079 (8)0.0060 (8)
Cl40.1173 (11)0.1100 (11)0.0748 (9)0.0393 (9)0.0193 (8)0.0016 (8)
Geometric parameters (Å, º) top
N1—C61.332 (7)C4—H40.9300
N1—N21.390 (7)C5—C61.342 (7)
N1—C71.485 (7)C5—H50.9300
N2—N31.327 (6)C7—H7A0.9600
N3—C11.367 (6)C7—H7B0.9600
N3—C81.460 (6)C7—H7C0.9600
C1—C61.373 (7)C8—H8A0.9600
C1—C21.390 (7)C8—H8B0.9600
C2—C31.390 (8)C8—H8C0.9600
C2—H20.9300Fe1—Cl22.1636 (17)
C3—C41.351 (8)Fe1—Cl32.1786 (15)
C3—H30.9300Fe1—Cl42.1840 (14)
C4—C51.408 (8)Fe1—Cl12.1867 (15)
C6—N1—N2112.9 (5)N1—C6—C5131.3 (6)
C6—N1—C7128.6 (6)N1—C6—C1105.8 (5)
N2—N1—C7118.5 (5)C5—C6—C1122.9 (6)
N3—N2—N1102.2 (4)N1—C7—H7A109.5
N2—N3—C1113.1 (5)N1—C7—H7B109.5
N2—N3—C8119.1 (5)H7A—C7—H7B109.5
C1—N3—C8127.9 (5)N1—C7—H7C109.5
N3—C1—C6106.1 (5)H7A—C7—H7C109.5
N3—C1—C2131.0 (5)H7B—C7—H7C109.5
C6—C1—C2122.9 (5)N3—C8—H8A109.5
C3—C2—C1113.9 (5)N3—C8—H8B109.5
C3—C2—H2123.0H8A—C8—H8B109.5
C1—C2—H2123.0N3—C8—H8C109.5
C4—C3—C2122.7 (5)H8A—C8—H8C109.5
C4—C3—H3118.6H8B—C8—H8C109.5
C2—C3—H3118.6Cl2—Fe1—Cl3109.81 (10)
C3—C4—C5122.4 (6)Cl2—Fe1—Cl4111.32 (8)
C3—C4—H4118.8Cl3—Fe1—Cl4108.36 (6)
C5—C4—H4118.8Cl2—Fe1—Cl1109.85 (7)
C6—C5—C4115.1 (5)Cl3—Fe1—Cl1109.04 (7)
C6—C5—H5122.4Cl4—Fe1—Cl1108.41 (7)
C4—C5—H5122.4
C6—N1—N2—N31.1 (5)C3—C4—C5—C61.3 (8)
C7—N1—N2—N3179.0 (4)N2—N1—C6—C5179.6 (5)
N1—N2—N3—C10.9 (5)C7—N1—C6—C50.4 (9)
N1—N2—N3—C8177.7 (4)N2—N1—C6—C10.9 (5)
N2—N3—C1—C60.4 (5)C7—N1—C6—C1179.2 (5)
C8—N3—C1—C6178.0 (5)C4—C5—C6—N1180.0 (5)
N2—N3—C1—C2179.8 (5)C4—C5—C6—C10.6 (7)
C8—N3—C1—C21.4 (8)N3—C1—C6—N10.3 (5)
N3—C1—C2—C3180.0 (5)C2—C1—C6—N1179.2 (5)
C6—C1—C2—C30.7 (7)N3—C1—C6—C5179.9 (5)
C1—C2—C3—C40.1 (8)C2—C1—C6—C50.4 (7)
C2—C3—C4—C51.1 (9)

Experimental details

Crystal data
Chemical formula(C8H10N3)[FeCl4]
Mr345.84
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.2920 (5), 12.5518 (6), 22.5857 (9)
V3)2917.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerOxford Diffraction SuperNova (Dual, Cu at zero, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2012)
Tmin, Tmax0.578, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
8114, 3016, 1828
Rint0.031
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.183, 1.05
No. of reflections3016
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are thankful for support of this study by the National Natural Science Foundation of China (grant No. J0730425) and the Gansu Provincial Natural Science Foundation of China (grant No. 0710RJZA113).

References

First citationHay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434.  Web of Science CSD CrossRef CAS
First citationLiu, F., John, K. D., Scott, B. L., Baker, T. R., Ott, K. C. & Tumas, W. (2000). Angew. Chem. Int. Ed. 39, 3127–3130.  CrossRef CAS
First citationLorenz, V., Fischer, A. & Edelmann, F. T. (2000). Z. Anorg. Allg. Chem. 626, 1728–1730.  Web of Science CSD CrossRef CAS
First citationOxford Diffraction (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
First citationShapley, P. A., Bigham, W. S. & Hay, M. T. (2003). Inorg. Chim. Acta, 345, 255–260.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds