supplementary materials


hy2616 scheme

Acta Cryst. (2013). E69, m172    [ doi:10.1107/S1600536813004091 ]

Diaquabis(1H-imidazole-4-carboxylato-[kappa]2N3,O4)manganese(II)

Z.-Y. Xiong, L. Li, X.-J. Zhao and H.-M. Chen

Abstract top

In the title compound, [Mn(C4H3N2O2)2(H2O)2], the MnII ion is located on a twofold rotation axis and displays a distorted octahedral coordination environment, defined by two N,O-bidentate 1H-imidazole-4-carboxylate ligands in the equatorial plane and two water molecules in axial positions. In the crystal, O-H...O and N-H...O hydrogen bonds link the molecules into a three-dimensional supramolecular network. [pi]-[pi] stacking interactions between the imidazole rings [centroid-centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the structure.

Comment top

In the past few years, structures containing metals and N-heterocyclic carboxylic acids have attracted much attention due to their fascinating structures and potential applications in many fields. 1H-Imidazole-4-carboxylic acid (H2imc), which contains two N atoms of an imidazole group and one carboxylate group, has been widely used to prepare a variety of coordination polymers with different structures and exceptional properties (Cai et al., 2012; Gryz et al., 2007; Haggag, 2005; Starosta & Leciejewicz, 2006; Zheng et al., 2011). For instance, three mononuclear complexes, [Cd(Himc)2(H2O)2] (Yin et al., 2009), [Zn(Himc)2(H2O)2] (Shuai et al., 2011) and [Co(Himc)2(H2O)2] (Chen, 2012), have been reported. In this paper, we report the synthesis and structure of a new Mn(II) coordination polymer, [Mn(Himc)2(H2O)2], which is isomorphous with the Cd(II), Zn(II) and Co(II) analogs.

The asymmetric unit of the title compound contains a half of [Mn(Himc)2(H2O)2] formula unit. The MnII ion, lying on a twofold rotation axis, is six-coordinated by two N and two O atoms from two cis-oriented N,O-bidentate Himc ligands in the equatorial plane, and two water molecules in the axial positions, forming a slightly distorted octahedral geometry (Fig. 1). The bond lengths and angles around the Mn atom are normal. In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) involving the coordinated water O atoms, carboxylate O atoms and imidazole N atoms link the molecules into a three-dimensional supramolecular network, as presented in Fig. 2. ππ stacking interactions between the imidazole rings [centroid–centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the crystal structure.

Related literature top

For related structures, see: Cai et al. (2012); Chen (2012); Gryz et al. (2007); Haggag (2005); Shuai et al. (2011); Starosta & Leciejewicz (2006); Yin et al. (2009); Zheng et al. (2011).

Experimental top

A mixture of H2imc (0.30 mmol), MnCl2.6H2O (0.30 mmol) and 6 ml EtOH/H2O (v/v 1:1) was sealed into a 10 ml sample bottle reactor and heated at 373 k for 72 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5 K/h. Colorless block crystals of the title compound were obtained, washed with distilled water and dried in air (yield: 30%).

Refinement top

C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of the water molecule were located from a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+3/2, -y+3/2, z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Diaquabis(1H-imidazole-4-carboxylato-κ2N3,O4)manganese(II) top
Crystal data top
[Mn(C4H3N2O2)2(H2O)2]F(000) = 636
Mr = 313.14Dx = 1.785 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1516 reflections
a = 7.3052 (10) Åθ = 3.3–24.9°
b = 11.7997 (17) ŵ = 1.16 mm1
c = 13.5156 (19) ÅT = 298 K
V = 1165.0 (3) Å3Block, colourless
Z = 40.36 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1145 independent reflections
Radiation source: fine-focus sealed tube972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.679, Tmax = 0.721k = 1410
5775 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3284P]
where P = (Fo2 + 2Fc2)/3
1145 reflections(Δ/σ)max = 0.001
87 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Mn(C4H3N2O2)2(H2O)2]V = 1165.0 (3) Å3
Mr = 313.14Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.3052 (10) ŵ = 1.16 mm1
b = 11.7997 (17) ÅT = 298 K
c = 13.5156 (19) Å0.36 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
972 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.721Rint = 0.067
5775 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.34 e Å3
S = 1.07Δρmin = 0.57 e Å3
1145 reflectionsAbsolute structure: ?
87 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.75000.75000.63202 (3)0.0256 (2)
N10.5501 (2)0.81048 (17)0.52125 (14)0.0282 (5)
N20.3599 (3)0.87066 (19)0.40742 (14)0.0342 (5)
H20.31360.88350.35000.041*
C10.4022 (3)0.87462 (18)0.67505 (16)0.0238 (5)
C20.4063 (3)0.86601 (18)0.56583 (16)0.0241 (5)
C40.5155 (3)0.8144 (2)0.42597 (17)0.0350 (6)
H40.58950.78220.37750.042*
C30.2882 (4)0.9039 (2)0.49557 (18)0.0312 (5)
H30.18040.94420.50570.037*
O10.5374 (2)0.83532 (14)0.72111 (11)0.0310 (4)
O20.2642 (2)0.91985 (15)0.71532 (12)0.0302 (4)
O1W0.5981 (2)0.59207 (14)0.66084 (14)0.0392 (5)
H1WA0.65280.54660.70240.059*
H1WB0.50220.58560.67580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0235 (4)0.0344 (4)0.0189 (3)0.00646 (18)0.0000.000
N10.0272 (11)0.0389 (12)0.0184 (10)0.0068 (8)0.0009 (8)0.0021 (8)
N20.0348 (13)0.0490 (13)0.0186 (10)0.0037 (9)0.0074 (8)0.0014 (8)
C10.0247 (12)0.0233 (11)0.0233 (12)0.0029 (9)0.0020 (9)0.0011 (8)
C20.0243 (12)0.0288 (12)0.0192 (12)0.0008 (9)0.0002 (9)0.0007 (8)
C40.0359 (15)0.0506 (16)0.0186 (12)0.0067 (11)0.0000 (10)0.0031 (10)
C30.0289 (12)0.0391 (13)0.0256 (13)0.0037 (10)0.0008 (10)0.0009 (10)
O10.0287 (10)0.0457 (10)0.0186 (8)0.0087 (7)0.0010 (7)0.0002 (7)
O20.0243 (10)0.0432 (11)0.0232 (10)0.0047 (6)0.0048 (6)0.0051 (7)
O1W0.0279 (10)0.0429 (11)0.0467 (12)0.0036 (7)0.0039 (8)0.0133 (8)
Geometric parameters (Å, º) top
Mn1—O1W2.2037 (17)N2—H20.8600
Mn1—O1Wi2.2038 (17)C1—O11.257 (3)
Mn1—O1i2.2079 (16)C1—O21.264 (3)
Mn1—O12.2079 (16)C1—C21.480 (3)
Mn1—N12.2097 (19)C2—C31.359 (3)
Mn1—N1i2.2097 (19)C4—H40.9300
N1—C41.313 (3)C3—H30.9300
N1—C21.377 (3)O1W—H1WA0.87
N2—C41.340 (3)O1W—H1WB0.73
N2—C31.359 (3)
O1W—Mn1—O1Wi159.64 (10)C4—N2—H2126.1
O1W—Mn1—O1i82.66 (6)C3—N2—H2126.1
O1Wi—Mn1—O1i86.27 (6)O1—C1—O2124.7 (2)
O1W—Mn1—O186.27 (6)O1—C1—C2116.93 (18)
O1Wi—Mn1—O182.66 (6)O2—C1—C2118.34 (19)
O1i—Mn1—O1113.90 (8)C3—C2—N1109.6 (2)
O1W—Mn1—N193.44 (7)C3—C2—C1131.4 (2)
O1Wi—Mn1—N1100.34 (7)N1—C2—C1118.98 (18)
O1i—Mn1—N1168.96 (6)N1—C4—N2111.4 (2)
O1—Mn1—N175.97 (7)N1—C4—H4124.3
O1W—Mn1—N1i100.34 (7)N2—C4—H4124.3
O1Wi—Mn1—N1i93.44 (7)C2—C3—N2105.9 (2)
O1i—Mn1—N1i75.96 (7)C2—C3—H3127.1
O1—Mn1—N1i168.97 (6)N2—C3—H3127.1
N1—Mn1—N1i94.70 (10)C1—O1—Mn1116.82 (14)
C4—N1—C2105.38 (19)Mn1—O1W—H1WA113.7
C4—N1—Mn1143.43 (17)Mn1—O1W—H1WB128.2
C2—N1—Mn1111.19 (14)H1WA—O1W—H1WB101.3
C4—N2—C3107.8 (2)
O1W—Mn1—N1—C495.6 (3)O1—C1—C2—N13.7 (3)
O1Wi—Mn1—N1—C499.5 (3)O2—C1—C2—N1175.9 (2)
O1i—Mn1—N1—C426.7 (5)C2—N1—C4—N21.0 (3)
O1—Mn1—N1—C4179.1 (3)Mn1—N1—C4—N2178.4 (2)
N1i—Mn1—N1—C45.1 (3)C3—N2—C4—N10.8 (3)
O1W—Mn1—N1—C285.01 (16)N1—C2—C3—N20.3 (3)
O1Wi—Mn1—N1—C279.94 (16)C1—C2—C3—N2179.3 (2)
O1i—Mn1—N1—C2153.9 (3)C4—N2—C3—C20.3 (3)
O1—Mn1—N1—C20.28 (15)O2—C1—O1—Mn1175.69 (16)
N1i—Mn1—N1—C2174.31 (19)C2—C1—O1—Mn13.9 (2)
C4—N1—C2—C30.8 (3)O1W—Mn1—O1—C192.12 (16)
Mn1—N1—C2—C3178.83 (16)O1Wi—Mn1—O1—C1105.01 (16)
C4—N1—C2—C1178.8 (2)O1i—Mn1—O1—C1172.39 (18)
Mn1—N1—C2—C11.5 (2)N1—Mn1—O1—C12.38 (16)
O1—C1—C2—C3176.7 (2)N1i—Mn1—O1—C135.2 (4)
O2—C1—C2—C33.7 (3)
Symmetry code: (i) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.952.811 (3)173
O1W—H1WA···O2iii0.871.962.818 (2)167
O1W—H1WB···O2iv0.732.022.751 (2)176
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.952.811 (3)173
O1W—H1WA···O2ii0.871.962.818 (2)167
O1W—H1WB···O2iii0.732.022.751 (2)176
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z.
Acknowledgements top

The authors acknowledge South China University of Technology for supporting this work.

references
References top

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Cai, S.-L., Pan, M., Zheng, S.-R., Tan, J.-B., Fan, J. & Zhang, W.-G. (2012). CrystEngComm, 14, 2308–2315.

Chen, W.-S. (2012). Acta Cryst. E68, m1246.

Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.

Haggag, S. S. (2005). Egypt. J. Chem. 48, 27–41.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.

Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.

Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.