[Journal logo]

Volume 69 
Part 3 
Page o318  
March 2013  

Received 20 December 2012
Accepted 25 January 2013
Online 2 February 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
Disorder in main residue
R = 0.045
wR = 0.128
Data-to-parameter ratio = 13.4
Details
Open access

2-Amino-6-methylpyridinium 3-chlorobenzoate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: arazaki@usm.my

In the title salt, C6H9N2+·C7H4ClO2-, the 3-chlorobenzoate anion shows a whole-molecule disorder over two positions with a refined occupancy ratio of 0.505 (4):0.495 (4). In the crystal, the cations and anions are linked via N-H...O hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R22(8) and R42(8) ring motifs. The crystal structure also features a [pi]-[pi] stacking interaction between the pyridinium rings with a centroid-centroid distance of 3.8339 (9) Å.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1843-o1844.]); Thanigaimani et al. (2012[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3195.]); Draguta et al. (2012[Draguta, S., Khrustalev, V. N., Sandhu, B., Antipin, M. Y. & Timofeeva, T. V. (2012). Acta Cryst. E68, o3466.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4ClO2-

  • Mr = 264.70

  • Monoclinic, C 2/c

  • a = 22.3118 (15) Å

  • b = 15.2053 (10) Å

  • c = 7.4166 (5) Å

  • [beta] = 100.924 (1)°

  • V = 2470.5 (3) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.30 mm-1

  • T = 100 K

  • 0.36 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.985

  • 24731 measured reflections

  • 3575 independent reflections

  • 2446 reflections with I > 2[sigma](I)

  • Rint = 0.053

Refinement
  • R[F2 > 2[sigma](F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.06

  • 3575 reflections

  • 267 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.29 e Å-3

  • [Delta][rho]min = -0.28 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H2N2...O1 0.94 (2) 1.69 (2) 2.614 (7) 168 (2)
N2-H1N2...O2 0.86 (2) 1.98 (3) 2.832 (14) 170 (2)
N2-H1N1...O2i 0.88 (2) 2.06 (2) 2.853 (11) 150 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5234 ).


Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS-USM fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.  [CrossRef] [ChemPort] [ISI] [details]
Draguta, S., Khrustalev, V. N., Sandhu, B., Antipin, M. Y. & Timofeeva, T. V. (2012). Acta Cryst. E68, o3466.  [CSD] [CrossRef] [details]
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1843-o1844.  [CSD] [CrossRef] [details]
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3195.  [CSD] [CrossRef] [details]


Acta Cryst (2013). E69, o318  [ doi:10.1107/S1600536813002559 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.