organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o458-o459

(E)-2-[4-(Di­ethyl­amino)­styr­yl]-1-ethyl­pyridinium iodide monohydrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 14 January 2013; accepted 24 February 2013; online 28 February 2013)

In the title hydrated salt, C19H25N2+·I·H2O, the 4-(diethyl­amino)­phenyl unit of the cation is disordered over two positions in a 0.847 (3):0.153 (3) ratio. The cation is twisted, with dihedral angles between the pyridinium and benzene rings of 11.25 (13) and 10.7 (8)° for the major and minor components, respectively. In the crystal, the three components are linked into a centrosymmetric 2:2:2 unit by O—H⋯I and C—H⋯O hydrogen bonds. ππ inter­actions with centroid–centroid distances of 3.5065 (7)–3.790 (9) Å are also present.

Related literature

For background to and applications of amino­styrylpyridinium compounds, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Larnbert et al. (1996[Larnbert, C., Mease, R. C., Amen, L., Le, T., Sabet, H. & McAfee, J. G. (1996). Nucl. Med. Biol., 23, 417-427.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011a). Acta Cryst. E67, o593-o594.],b[Fun, H.-K., Kaewmanee, N., Chanawanno, K., Karalai, C. & Chantrapromma, S. (2011b). Acta Cryst. E67, o2488-o2489.]); Kaewmanee et al. (2010[Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639-o2640.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25N2+·I·H2O

  • Mr = 426.33

  • Triclinic, [P \overline 1]

  • a = 7.9969 (1) Å

  • b = 9.1336 (1) Å

  • c = 14.7740 (2) Å

  • α = 96.220 (1)°

  • β = 105.430 (1)°

  • γ = 105.060 (1)°

  • V = 986.05 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 100 K

  • 0.26 × 0.23 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.677, Tmax = 0.816

  • 32289 measured reflections

  • 8664 independent reflections

  • 7821 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.055

  • S = 1.08

  • 8664 reflections

  • 254 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯I1i 0.85 (3) 2.71 (2) 3.5498 (12) 176 (2)
O1W—H2W⋯I1ii 0.86 (3) 2.75 (3) 3.6055 (13) 171 (2)
C3—H3A⋯O1Wiii 0.95 2.35 3.2072 (19) 150
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aminostyryl pyridinium (ASP) salts have been widely synthesized and used as fluorescence dyes for lymphocytes labeling and preliminary diagnostic imaging studies on dogs having a sodium-urate-induced inflammation in their stifle joints (Larnbert et al., 1996). Moreover, ASP salts have been reported to possess antibacterial activity (Chanawanno et al., 2010). During the course of our research on synthesis and antibacterial activity of quaternary ammonium compounds (Chanawanno et al., 2010; Kaewmanee et al., 2010), the title aminostyryl pyridinium derivative (I) was synthesized and tested for antibacterial activity. Our antibacterial assay showed that (I) exhibit moderate activity against Pseudomonas aeruginosa. Herein its crystal structure is reported.

The asymmetric unit of the title compound (I) (Fig. 1) consists of the C19H25N2+ cation, I- anion and one H2O molecule. The 4-diethylaminophenyl unit of the cation is disordered over two positions; the major component A and the minor component B (Fig. 1), with the refined site-occupancy ratio of 0.847 (3)/0.153 (3). The cation exists in the trans configuration with respect to the C6C7 double bond [1.3548 (16) Å] and the torsion angle C5—C6—C7—C8 = -176.54 (12)°. The cation is twisted as indicated by the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings being 11.25 (13) and 10.7 (8)° for the major and minor components, respectively. It is interesting that the two ethyl groups of diethylamino moiety of both major and minor components deviated from the attached benzene ring but in different conformations in that the two ethyl units of the major component A point towards the same direction (Fig. 2), whereas they pointed opposite to each other for the minor component B (Fig. 3). These orientations of the diethylamino group can be indicated by the torsion angles C11A—N2A—C16A—C17A = -81.12 (19)° and C11A—N2A—C18A—C19A = 81.4 (2)° for the major component A and C11B—N2B—C16B—C17B = 87.0 (11)° and C11B—N2B—C18B—C19B = 93.0 (19)° for the minor component B. The other ethyl unit attached to atom N1 also deviated from its bound pyridinium ring with the torsion angle C5—N1—C14—C15 = -86.95 (14)° for the major component A and -81 (7)° for the minor component B. The bond lengths of cation are in normal ranges (Allen et al., 1987) and comparable with related structures (Fun et al., 2011a,b; Kaewmanee et al., 2010).

In the crystal packing, the cations, anions and water molecules are linked into a centrosymmetric 2:2:2 unit of the three components by O—H···I hydrogen bonds and a weak C—H···O interaction (Fig. 4 and Table 1). ππ interactions with the centroid distances of Cg1···Cg1v = 3.5065 (7) Å [symmetry code (v) = 1 - x, 2 - y, 1 - z], Cg1···Cg2ii = 3.5796 (16) Å and Cg1···Cg3ii = 3.790 (9) Å were observed; Cg1, Cg2 and Cg3 are the centroids of N1/C1–C5, C8/C9A–C13A and C8/C9B–C13B rings, respectively.

Related literature top

For background to and applications of aminostyrylpyridinium compounds, see: Chanawanno et al. (2010); Larnbert et al. (1996). For related structures, see: Fun et al. (2011a,b); Kaewmanee et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was prepared by mixing 1:1:1 molar ratio solutions of 1-ethyl-2-methylpyridinium iodide (1 g, 4 mmol), 4-diethylaminobenzaldehyde (0.7 g, 4 mmol) and piperidine (0.4 ml, 4 mmol) in methanol (40 ml). The resulting solution was stirred for 4 h under a nitrogen atmosphere. The orange solid which formed was filtered and washed with diethylether. Orange block-shaped single crystals of (I) suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks, M.p. 446–448 K.

Refinement top

Water H atoms were located in a difference Fourier map and the positions were refined freely, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were fixed geometrically and all hydrogen atoms were allowed to ride on their parent atoms, with d(C—H) = 0.95 for aromatic and CH, 0.99 for CH2 and 0.98 Å for CH3 atoms. Their Uiso values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups. The 4-diethylaminophenyl unit is disordered over two sites with refined site occupancies of 0.847 (3) and 0.153 (3). The non-hydrogen atoms of the minor component were refined isotropically with the Uiso values of N2B, C9B, C10B, C11B, C12B and C13B being fixed at 0.01583 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.
[Figure 2] Fig. 2. The molecular structure of the major component A, showing the orientation of the two ethyl groups of the diethylamino pointing towards the same direction.
[Figure 3] Fig. 3. The molecular structure of the minor component B, showing the orientation of the two ethyl groups of the diethylamino pointing in opposite direction.
[Figure 4] Fig. 4. The crystal packing of the major component viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
(E)-2-[4-(Diethylamino)styryl]-1-ethylpyridinium iodide monohydrate top
Crystal data top
C19H25N2+·I·H2OZ = 2
Mr = 426.33F(000) = 432
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Melting point = 466–468 K
a = 7.9969 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1336 (1) ÅCell parameters from 8664 reflections
c = 14.7740 (2) Åθ = 1.5–35.2°
α = 96.220 (1)°µ = 1.63 mm1
β = 105.430 (1)°T = 100 K
γ = 105.060 (1)°Block, orange
V = 986.05 (2) Å30.26 × 0.23 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8664 independent reflections
Radiation source: fine-focus sealed tube7821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.33 pixels mm-1θmax = 35.2°, θmin = 1.5°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.677, Tmax = 0.816l = 2323
32289 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0222P)2 + 0.355P]
where P = (Fo2 + 2Fc2)/3
8664 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 0.78 e Å3
20 restraintsΔρmin = 0.99 e Å3
Crystal data top
C19H25N2+·I·H2Oγ = 105.060 (1)°
Mr = 426.33V = 986.05 (2) Å3
Triclinic, P1Z = 2
a = 7.9969 (1) ÅMo Kα radiation
b = 9.1336 (1) ŵ = 1.63 mm1
c = 14.7740 (2) ÅT = 100 K
α = 96.220 (1)°0.26 × 0.23 × 0.13 mm
β = 105.430 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8664 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7821 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.816Rint = 0.025
32289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02520 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.78 e Å3
8664 reflectionsΔρmin = 0.99 e Å3
254 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.748096 (12)0.409068 (8)0.331067 (6)0.02160 (3)
O1W0.11907 (16)0.28996 (13)0.46705 (9)0.0284 (2)
H1W0.155 (3)0.359 (3)0.5168 (17)0.043*
H2W0.029 (3)0.310 (3)0.4293 (17)0.043*
N10.35581 (14)0.74599 (11)0.39233 (7)0.01566 (17)
C10.22228 (17)0.76646 (14)0.42876 (9)0.0186 (2)
H1A0.15200.68230.44840.022*
C20.18657 (17)0.90514 (14)0.43787 (9)0.0197 (2)
H2A0.09260.91760.46320.024*
C30.29171 (17)1.02765 (14)0.40898 (9)0.0191 (2)
H3A0.27231.12600.41600.023*
C40.42409 (17)1.00497 (13)0.37018 (9)0.0175 (2)
H4A0.49421.08840.34980.021*
C50.45769 (16)0.86130 (12)0.36008 (8)0.01505 (19)
C60.59165 (16)0.83175 (13)0.31664 (9)0.0161 (2)
H6A0.59790.72920.30530.019*
C70.70797 (16)0.94503 (13)0.29176 (8)0.01576 (19)
H7A0.70221.04690.30760.019*
C80.83991 (16)0.92867 (12)0.24387 (8)0.01542 (19)
C140.38311 (18)0.59060 (13)0.38875 (10)0.0191 (2)
H14A0.34700.54380.44070.023*
H14B0.51370.60160.39940.023*
C150.2723 (2)0.48452 (15)0.29321 (11)0.0260 (3)
H15A0.28730.38160.29470.039*
H15B0.31450.52640.24210.039*
H15C0.14350.47710.28120.039*
N2A1.2553 (2)0.91163 (15)0.11947 (12)0.0199 (3)0.847 (3)
C9A0.9548 (3)1.0628 (4)0.22893 (14)0.0158 (4)0.847 (3)
H9A0.94041.16000.24870.019*0.847 (3)
C10A1.0880 (2)1.0578 (2)0.18638 (12)0.0167 (3)0.847 (3)
H10A1.16201.15110.17700.020*0.847 (3)
C11A1.1162 (2)0.9159 (2)0.15659 (11)0.0162 (3)0.847 (3)
C12A0.9984 (7)0.7803 (5)0.1698 (5)0.0183 (9)0.847 (3)
H12A1.00920.68260.14770.022*0.847 (3)
C13A0.8679 (6)0.7869 (6)0.2142 (4)0.0168 (7)0.847 (3)
H13A0.79540.69410.22490.020*0.847 (3)
C16A1.3859 (2)1.05464 (18)0.11576 (11)0.0219 (3)0.847 (3)
H16A1.49921.03230.11270.026*0.847 (3)
H16B1.41621.12910.17590.026*0.847 (3)
C17A1.3210 (3)1.1305 (2)0.03204 (13)0.0289 (4)0.847 (3)
H17A1.41221.22920.03780.043*0.847 (3)
H17B1.20561.14880.03240.043*0.847 (3)
H17C1.30311.06250.02800.043*0.847 (3)
C18A1.2781 (3)0.7663 (2)0.08186 (18)0.0221 (4)0.847 (3)
H18A1.25230.69230.12430.027*0.847 (3)
H18B1.40670.78460.08380.027*0.847 (3)
C19A1.1561 (5)0.6927 (4)0.02058 (19)0.0335 (5)0.847 (3)
H19A1.17880.59570.04050.050*0.847 (3)
H19B1.18320.76350.06370.050*0.847 (3)
H19C1.02820.67180.02310.050*0.847 (3)
N2B1.1981 (11)0.9042 (8)0.0815 (6)0.016*0.153 (3)
C9B0.932 (2)1.059 (2)0.2133 (12)0.016*0.153 (3)
H9B0.90921.15470.22780.019*0.153 (3)
C10B1.0539 (16)1.0528 (13)0.1633 (8)0.016*0.153 (3)
H10B1.11901.14460.14790.019*0.153 (3)
C11B1.0830 (16)0.9109 (13)0.1347 (8)0.016*0.153 (3)
C12B0.982 (5)0.779 (3)0.161 (3)0.016*0.153 (3)
H12B1.00490.68300.14810.019*0.153 (3)
C13B0.851 (4)0.788 (4)0.204 (2)0.016*0.153 (3)
H13B0.76650.69500.20760.019*0.153 (3)
C16B1.2738 (12)1.0334 (9)0.0393 (6)0.0224 (18)*0.153 (3)
H16C1.18181.08800.02000.027*0.153 (3)
H16D1.29720.99180.01920.027*0.153 (3)
C17B1.4473 (13)1.1485 (11)0.1044 (7)0.028 (2)*0.153 (3)
H37D1.48001.23800.07450.042*0.153 (3)
H37E1.54511.10020.11560.042*0.153 (3)
H37F1.42971.18220.16560.042*0.153 (3)
C18B1.246 (2)0.7623 (14)0.0573 (9)0.024 (3)*0.153 (3)
H18C1.23830.70140.10840.029*0.153 (3)
H18D1.37330.79190.05650.029*0.153 (3)
C19B1.129 (4)0.662 (3)0.0358 (16)0.068 (9)*0.153 (3)
H39D1.16990.57180.04660.102*0.153 (3)
H39E1.13630.72060.08730.102*0.153 (3)
H39F1.00230.62870.03510.102*0.153 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02157 (4)0.01510 (3)0.03178 (5)0.00740 (3)0.01155 (3)0.00642 (3)
O1W0.0277 (5)0.0287 (5)0.0332 (6)0.0139 (4)0.0125 (5)0.0033 (4)
N10.0139 (4)0.0150 (4)0.0190 (4)0.0045 (3)0.0065 (4)0.0034 (3)
C10.0151 (5)0.0207 (5)0.0214 (5)0.0051 (4)0.0082 (4)0.0039 (4)
C20.0163 (5)0.0230 (5)0.0211 (5)0.0078 (4)0.0072 (4)0.0016 (4)
C30.0195 (5)0.0194 (5)0.0196 (5)0.0093 (4)0.0055 (4)0.0019 (4)
C40.0189 (5)0.0148 (4)0.0200 (5)0.0061 (4)0.0070 (4)0.0030 (4)
C50.0144 (5)0.0140 (4)0.0170 (5)0.0039 (3)0.0056 (4)0.0028 (3)
C60.0165 (5)0.0146 (4)0.0193 (5)0.0050 (4)0.0084 (4)0.0035 (4)
C70.0161 (5)0.0146 (4)0.0179 (5)0.0049 (4)0.0069 (4)0.0035 (4)
C80.0165 (5)0.0141 (4)0.0168 (5)0.0044 (4)0.0070 (4)0.0036 (4)
C140.0192 (5)0.0148 (4)0.0275 (6)0.0064 (4)0.0114 (5)0.0077 (4)
C150.0231 (6)0.0165 (5)0.0362 (7)0.0032 (4)0.0100 (6)0.0000 (5)
N2A0.0189 (6)0.0213 (5)0.0225 (7)0.0066 (5)0.0114 (6)0.0030 (5)
C9A0.0178 (10)0.0138 (5)0.0158 (10)0.0042 (7)0.0062 (8)0.0022 (8)
C10A0.0172 (8)0.0160 (5)0.0169 (8)0.0030 (5)0.0071 (6)0.0025 (6)
C11A0.0161 (8)0.0184 (5)0.0150 (7)0.0057 (6)0.0061 (6)0.0026 (6)
C12A0.0204 (17)0.0155 (5)0.021 (2)0.0068 (7)0.0088 (17)0.0031 (7)
C13A0.0179 (13)0.0137 (5)0.0203 (17)0.0051 (7)0.0076 (13)0.0045 (8)
C16A0.0166 (7)0.0262 (7)0.0224 (7)0.0040 (5)0.0082 (5)0.0035 (5)
C17A0.0342 (9)0.0323 (8)0.0247 (8)0.0097 (7)0.0151 (7)0.0087 (6)
C18A0.0256 (10)0.0258 (8)0.0205 (10)0.0122 (7)0.0120 (9)0.0036 (7)
C19A0.0454 (14)0.0327 (10)0.0234 (9)0.0128 (10)0.0124 (9)0.0023 (8)
Geometric parameters (Å, º) top
O1W—H1W0.84 (2)C12A—H12A0.9500
O1W—H2W0.86 (3)C13A—H13A0.9500
N1—C11.3611 (15)C16A—C17A1.520 (3)
N1—C51.3672 (15)C16A—H16A0.9900
N1—C141.4886 (15)C16A—H16B0.9900
C1—C21.3695 (17)C17A—H17A0.9800
C1—H1A0.9500C17A—H17B0.9800
C2—C31.3953 (18)C17A—H17C0.9800
C2—H2A0.9500C18A—C19A1.532 (4)
C3—C41.3796 (17)C18A—H18A0.9900
C3—H3A0.9500C18A—H18B0.9900
C4—C51.4066 (16)C19A—H19A0.9800
C4—H4A0.9500C19A—H19B0.9800
C5—C61.4529 (16)C19A—H19C0.9800
C6—C71.3548 (16)N2B—C11B1.369 (11)
C6—H6A0.9500N2B—C16B1.462 (10)
C7—C81.4465 (16)N2B—C18B1.477 (12)
C7—H7A0.9500C9B—C10B1.379 (15)
C8—C13B1.39 (3)C9B—H9B0.9500
C8—C9A1.405 (3)C10B—C11B1.415 (12)
C8—C13A1.414 (5)C10B—H10B0.9500
C8—C9B1.42 (2)C11B—C12B1.419 (15)
C14—C151.5193 (19)C12B—C13B1.383 (17)
C14—H14A0.9900C12B—H12B0.9500
C14—H14B0.9900C13B—H13B0.9500
C15—H15A0.9800C16B—C17B1.506 (11)
C15—H15B0.9800C16B—H16C0.9900
C15—H15C0.9800C16B—H16D0.9900
N2A—C11A1.372 (2)C17B—H37D0.9800
N2A—C18A1.457 (2)C17B—H37E0.9800
N2A—C16A1.462 (2)C17B—H37F0.9800
C9A—C10A1.381 (3)C18B—C19B1.484 (16)
C9A—H9A0.9500C18B—H18C0.9900
C10A—C11A1.416 (2)C18B—H18D0.9900
C10A—H10A0.9500C19B—H39D0.9800
C11A—C12A1.416 (3)C19B—H39E0.9800
C12A—C13A1.382 (3)C19B—H39F0.9800
H1W—O1W—H2W105 (2)C11A—C12A—H12A119.3
C1—N1—C5121.81 (10)C12A—C13A—C8121.4 (4)
C1—N1—C14116.17 (10)C12A—C13A—H13A119.3
C5—N1—C14122.02 (10)C8—C13A—H13A119.3
N1—C1—C2121.79 (12)N2A—C16A—C17A114.86 (15)
N1—C1—H1A119.1N2A—C16A—H16A108.6
C2—C1—H1A119.1C17A—C16A—H16A108.6
C1—C2—C3118.30 (11)N2A—C16A—H16B108.6
C1—C2—H2A120.9C17A—C16A—H16B108.6
C3—C2—H2A120.9H16A—C16A—H16B107.5
C4—C3—C2119.53 (11)N2A—C18A—C19A114.4 (2)
C4—C3—H3A120.2N2A—C18A—H18A108.7
C2—C3—H3A120.2C19A—C18A—H18A108.7
C3—C4—C5121.55 (11)N2A—C18A—H18B108.7
C3—C4—H4A119.2C19A—C18A—H18B108.7
C5—C4—H4A119.2H18A—C18A—H18B107.6
N1—C5—C4116.96 (10)C11B—N2B—C16B122.6 (7)
N1—C5—C6119.97 (10)C11B—N2B—C18B122.3 (9)
C4—C5—C6123.06 (11)C16B—N2B—C18B115.0 (8)
C7—C6—C5122.42 (10)C10B—C9B—C8122.4 (15)
C7—C6—H6A118.8C10B—C9B—H9B118.8
C5—C6—H6A118.8C8—C9B—H9B118.8
C6—C7—C8127.43 (10)C9B—C10B—C11B120.6 (13)
C6—C7—H7A116.3C9B—C10B—H10B119.7
C8—C7—H7A116.3C11B—C10B—H10B119.7
C13B—C8—C9A117.3 (10)N2B—C11B—C10B120.3 (10)
C9A—C8—C13A116.9 (2)N2B—C11B—C12B123.1 (14)
C13B—C8—C9B115.7 (12)C10B—C11B—C12B116.6 (14)
C13A—C8—C9B116.6 (7)C13B—C12B—C11B121 (2)
C13B—C8—C7124.1 (10)C13B—C12B—H12B119.4
C9A—C8—C7118.43 (13)C11B—C12B—H12B119.4
C13A—C8—C7124.64 (19)C12B—C13B—C8122 (2)
C9B—C8—C7118.3 (7)C12B—C13B—H13B119.2
N1—C14—C15111.56 (11)C8—C13B—H13B119.2
N1—C14—H14A109.3N2B—C16B—C17B114.5 (8)
C15—C14—H14A109.3N2B—C16B—H16C108.6
N1—C14—H14B109.3C17B—C16B—H16C108.6
C15—C14—H14B109.3N2B—C16B—H16D108.6
H14A—C14—H14B108.0C17B—C16B—H16D108.6
C14—C15—H15A109.5H16C—C16B—H16D107.6
C14—C15—H15B109.5C16B—C17B—H37D109.5
H15A—C15—H15B109.5C16B—C17B—H37E109.5
C14—C15—H15C109.5H37D—C17B—H37E109.5
H15A—C15—H15C109.5C16B—C17B—H37F109.5
H15B—C15—H15C109.5H37D—C17B—H37F109.5
C11A—N2A—C18A121.83 (15)H37E—C17B—H37F109.5
C11A—N2A—C16A120.56 (13)N2B—C18B—C19B114.7 (14)
C18A—N2A—C16A117.61 (13)N2B—C18B—H18C108.6
C10A—C9A—C8122.1 (2)C19B—C18B—H18C108.6
C10A—C9A—H9A118.9N2B—C18B—H18D108.6
C8—C9A—H9A118.9C19B—C18B—H18D108.6
C9A—C10A—C11A121.06 (19)H18C—C18B—H18D107.6
C9A—C10A—H10A119.5C18B—C19B—H39D109.5
C11A—C10A—H10A119.5C18B—C19B—H39E109.5
N2A—C11A—C12A121.9 (2)H39D—C19B—H39E109.5
N2A—C11A—C10A121.11 (16)C18B—C19B—H39F109.5
C12A—C11A—C10A116.9 (2)H39D—C19B—H39F109.5
C13A—C12A—C11A121.5 (4)H39E—C19B—H39F109.5
C13A—C12A—H12A119.3
C5—N1—C1—C22.09 (19)C10A—C11A—C12A—C13A3.2 (7)
C14—N1—C1—C2178.50 (12)C11A—C12A—C13A—C83.3 (8)
N1—C1—C2—C30.24 (19)C13B—C8—C13A—C12A93 (10)
C1—C2—C3—C41.65 (19)C9A—C8—C13A—C12A2.0 (6)
C2—C3—C4—C50.85 (19)C9B—C8—C13A—C12A9.2 (10)
C1—N1—C5—C42.81 (17)C7—C8—C13A—C12A179.1 (4)
C14—N1—C5—C4177.81 (11)C11A—N2A—C16A—C17A81.12 (19)
C1—N1—C5—C6176.43 (11)C18A—N2A—C16A—C17A98.4 (2)
C14—N1—C5—C62.94 (17)C11A—N2A—C18A—C19A81.4 (2)
C3—C4—C5—N11.35 (18)C16A—N2A—C18A—C19A98.1 (2)
C3—C4—C5—C6177.87 (12)C13B—C8—C9B—C10B12 (2)
N1—C5—C6—C7173.61 (12)C9A—C8—C9B—C10B89 (5)
C4—C5—C6—C77.19 (19)C13A—C8—C9B—C10B4.8 (18)
C5—C6—C7—C8176.54 (12)C7—C8—C9B—C10B177.0 (11)
C6—C7—C8—C13B8.8 (18)C8—C9B—C10B—C11B4 (2)
C6—C7—C8—C9A176.71 (14)C16B—N2B—C11B—C10B9.6 (15)
C6—C7—C8—C13A0.4 (3)C18B—N2B—C11B—C10B174.4 (10)
C6—C7—C8—C9B172.0 (8)C16B—N2B—C11B—C12B168 (2)
C1—N1—C14—C1592.46 (13)C18B—N2B—C11B—C12B8 (3)
C5—N1—C14—C1586.95 (14)C9B—C10B—C11B—N2B177.1 (12)
C13B—C8—C9A—C10A7.1 (16)C9B—C10B—C11B—C12B0 (3)
C13A—C8—C9A—C10A0.7 (3)N2B—C11B—C12B—C13B172 (3)
C9B—C8—C9A—C10A90 (4)C10B—C11B—C12B—C13B5 (5)
C7—C8—C9A—C10A178.03 (14)C11B—C12B—C13B—C815 (6)
C8—C9A—C10A—C11A0.7 (2)C9A—C8—C13B—C12B6 (4)
C18A—N2A—C11A—C12A6.8 (4)C13A—C8—C13B—C12B82 (10)
C16A—N2A—C11A—C12A173.7 (4)C9B—C8—C13B—C12B17 (4)
C18A—N2A—C11A—C10A175.31 (17)C7—C8—C13B—C12B179 (3)
C16A—N2A—C11A—C10A4.2 (2)C11B—N2B—C16B—C17B87.0 (11)
C9A—C10A—C11A—N2A176.13 (15)C18B—N2B—C16B—C17B96.8 (10)
C9A—C10A—C11A—C12A1.9 (4)C11B—N2B—C18B—C19B93.0 (19)
N2A—C11A—C12A—C13A174.8 (4)C16B—N2B—C18B—C19B83.3 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···I1i0.85 (3)2.71 (2)3.5498 (12)176 (2)
O1W—H2W···I1ii0.86 (3)2.75 (3)3.6055 (13)171 (2)
C3—H3A···O1Wiii0.952.353.2072 (19)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H25N2+·I·H2O
Mr426.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9969 (1), 9.1336 (1), 14.7740 (2)
α, β, γ (°)96.220 (1), 105.430 (1), 105.060 (1)
V3)986.05 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.26 × 0.23 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.677, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
32289, 8664, 7821
Rint0.025
(sin θ/λ)max1)0.811
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.08
No. of reflections8664
No. of parameters254
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.99

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···I1i0.85 (3)2.71 (2)3.5498 (12)176 (2)
O1W—H2W···I1ii0.86 (3)2.75 (3)3.6055 (13)171 (2)
C3—H3A···O1Wiii0.952.353.2072 (19)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SC, NB and NK thank Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011a). Acta Cryst. E67, o593–o594.  Web of Science CSD CrossRef IUCr Journals
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K., Karalai, C. & Chantrapromma, S. (2011b). Acta Cryst. E67, o2488–o2489.  Web of Science CSD CrossRef IUCr Journals
First citationKaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLarnbert, C., Mease, R. C., Amen, L., Le, T., Sabet, H. & McAfee, J. G. (1996). Nucl. Med. Biol., 23, 417–427.  PubMed Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o458-o459
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds