organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2,4-Di­methyl-N′-(2-methyl­benzyl­­idene)benzohydrazide

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 11 February 2013; accepted 14 February 2013; online 20 February 2013)

In the title benzoyl­hydrazide derivative, C17H18N2O, the dihedral angle between the benzene rings is 88.45 (8)° and the azomethine double bond adopts an E conformation. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a chain along the b axis.

Related literature

For the applications and biological activity of Schiff bases, see: Musharraf et al. (2012[Musharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779-789.]); Khan et al. (2012[Khan, K. M., Taha, M., Naz, F., Siddiqui, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705-710.]). For the crystal structures of related compounds, see: Taha et al. (2012a[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012a). Acta Cryst. E68, o2778.],b[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012b). Acta Cryst. E68, o2780.]); Naz et al. (2012[Naz, H., Taha, M., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2671.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O

  • Mr = 266.33

  • Orthorhombic, P c a 21

  • a = 26.1151 (10) Å

  • b = 4.9484 (2) Å

  • c = 11.3933 (4) Å

  • V = 1472.33 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.56 × 0.55 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.983

  • 8023 measured reflections

  • 2577 independent reflections

  • 2483 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.04

  • 2577 reflections

  • 189 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.833 (15) 2.000 (15) 2.8150 (14) 166.1 (14)
C8—H8A⋯O1i 0.93 2.52 3.2696 (19) 138
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzohydrazides represents an important class of organic compounds with a wide range of biological applications (Musharraf et al., 2012; Khan et al., 2012). The title compound was obtained in continuation of our work to synthesize and study the biological activities of benzohydrazide derivatives. Previously, we have published crystal structures of many benzohydrazides derivatives with different substitution pattern on two phenyl rings (Taha et al., 2012a,b; Naz et al., 2012). In the title compound two methyl substituted phenyl rings (C1–C6 and C9–C14) are each planner with dihedral angle of 88.45 (8)° between them. The bond lengths and angles were found to be similar as in structurally related benzohydrazide derivatives (Taha et al., 2012a,b; Naz et al., 2012). The crystal structure stabilize by intermolecular N1—H1A···O1i and C8—H8A···O1i interactions to form a chain along the b axis (symmetry code as in Table 1).

Related literature top

For the applications and biological activity of Schiff bases, see: Musharraf et al. (2012); Khan et al. (2012). For the crystal structures of related compounds, see: Taha et al. (2012a,b); Naz et al. (2012).

Experimental top

The title compound was synthesized by using (0.328 g) 2 mmol of 2,4-dimethylbenzohydrazide and (0.240 g) 2 mmol 2-methylbenzaldehyde as starting material under same conditions and solvents as described in our previous publications (Taha et al., 2012a,b; Naz et al., 2012). The compound was recrystallized by dissolving in methanol to obtain colorless needles (0.474 g, 89% yield). All chemicals were purchased by sigma Aldrich Germany.

Refinement top

H atoms on methyl and phenyl groups were positioned geometrically with C—H = 0.96 and 0.93 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(Cmethyl) or 1.2Ueq(Cphenyl). A rotating group model was applied to the methyl groups. The H atoms on the nitrogen was located in a difference Fourier map and refined isotropically [N—H = 0.832 (15) Å]. The Hooft y parameter was -0.3 (5).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound. Only hydrogen atoms involved in the hydrogen bonds (dashed lines) are shown.
(E)-2,4-Dimethyl-N'-(2-methylbenzylidene)benzohydrazide top
Crystal data top
C17H18N2OF(000) = 568
Mr = 266.33Dx = 1.202 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4590 reflections
a = 26.1151 (10) Åθ = 2.4–27.4°
b = 4.9484 (2) ŵ = 0.08 mm1
c = 11.3933 (4) ÅT = 273 K
V = 1472.33 (10) Å3Block, colorles
Z = 40.56 × 0.55 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2577 independent reflections
Radiation source: fine-focus sealed tube2483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2531
Tmin = 0.959, Tmax = 0.983k = 55
8023 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1205P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2577 reflectionsΔρmax = 0.12 e Å3
189 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Crystal data top
C17H18N2OV = 1472.33 (10) Å3
Mr = 266.33Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 26.1151 (10) ŵ = 0.08 mm1
b = 4.9484 (2) ÅT = 273 K
c = 11.3933 (4) Å0.56 × 0.55 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2577 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2483 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.983Rint = 0.021
8023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.12 e Å3
2577 reflectionsΔρmin = 0.14 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40241 (5)0.5493 (2)0.43046 (18)0.0938 (6)
N10.38352 (4)0.1086 (2)0.44326 (11)0.0438 (3)
H1A0.3925 (5)0.050 (3)0.4301 (13)0.039 (4)*
N20.33498 (4)0.1558 (2)0.48752 (10)0.0448 (3)
C10.49419 (6)0.0399 (3)0.44104 (14)0.0500 (3)
H1B0.47970.03460.50820.060*
C20.54235 (6)0.0412 (3)0.40641 (15)0.0600 (4)
H2B0.56010.16790.45100.072*
C30.56461 (6)0.0633 (4)0.30653 (15)0.0605 (4)
C40.53740 (6)0.2556 (4)0.24413 (14)0.0588 (4)
H4A0.55240.32970.17750.071*
C50.48869 (6)0.3437 (3)0.27612 (13)0.0488 (4)
C60.46699 (5)0.2308 (3)0.37737 (12)0.0426 (3)
C70.41514 (5)0.3145 (3)0.41905 (14)0.0480 (3)
C80.30625 (5)0.0517 (3)0.49163 (13)0.0459 (3)
H8A0.31810.21570.46240.055*
C90.25464 (5)0.0345 (3)0.54203 (13)0.0458 (3)
C100.24424 (6)0.1476 (3)0.63203 (14)0.0553 (4)
H10A0.27030.25790.66020.066*
C110.19599 (7)0.1674 (4)0.68005 (15)0.0656 (5)
H11A0.18930.29220.73920.079*
C120.15778 (7)0.0008 (4)0.63967 (17)0.0665 (5)
H12A0.12520.01080.67220.080*
C130.16772 (6)0.1808 (3)0.55115 (18)0.0628 (4)
H13A0.14140.29220.52480.075*
C140.21564 (5)0.2029 (3)0.50006 (14)0.0500 (3)
C150.22448 (7)0.3941 (3)0.39994 (17)0.0652 (4)
H15A0.19400.49790.38620.098*
H15B0.25220.51360.41890.098*
H15C0.23290.29330.33060.098*
C160.61613 (7)0.0348 (6)0.2648 (2)0.0969 (8)
H16A0.63830.06060.33110.145*
H16B0.63080.09690.21290.145*
H16C0.61200.20300.22390.145*
C170.46107 (8)0.5471 (4)0.20175 (18)0.0736 (5)
H17A0.42500.50910.20280.110*
H17B0.47350.53700.12260.110*
H17C0.46700.72510.23230.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0731 (8)0.0328 (5)0.1753 (17)0.0011 (5)0.0407 (10)0.0067 (8)
N10.0394 (6)0.0335 (5)0.0587 (7)0.0032 (4)0.0055 (5)0.0042 (5)
N20.0388 (6)0.0451 (6)0.0505 (6)0.0038 (5)0.0034 (5)0.0020 (5)
C10.0471 (8)0.0556 (8)0.0472 (8)0.0015 (6)0.0033 (7)0.0003 (7)
C20.0467 (8)0.0745 (10)0.0586 (10)0.0108 (7)0.0058 (8)0.0036 (8)
C30.0421 (8)0.0810 (11)0.0583 (9)0.0034 (7)0.0019 (8)0.0175 (8)
C40.0589 (10)0.0728 (10)0.0448 (8)0.0218 (8)0.0111 (7)0.0100 (7)
C50.0555 (9)0.0431 (7)0.0477 (8)0.0127 (6)0.0011 (7)0.0043 (6)
C60.0429 (7)0.0367 (6)0.0482 (8)0.0057 (5)0.0015 (6)0.0066 (5)
C70.0460 (8)0.0349 (6)0.0630 (9)0.0006 (5)0.0038 (7)0.0038 (6)
C80.0415 (7)0.0427 (6)0.0534 (8)0.0024 (6)0.0011 (6)0.0018 (6)
C90.0414 (7)0.0469 (7)0.0492 (7)0.0032 (6)0.0032 (6)0.0059 (6)
C100.0508 (9)0.0632 (9)0.0520 (8)0.0002 (7)0.0027 (7)0.0012 (7)
C110.0663 (11)0.0764 (11)0.0541 (9)0.0055 (9)0.0177 (8)0.0022 (8)
C120.0499 (9)0.0789 (11)0.0707 (11)0.0030 (8)0.0207 (9)0.0056 (9)
C130.0458 (8)0.0650 (9)0.0774 (11)0.0079 (7)0.0060 (9)0.0036 (9)
C140.0454 (8)0.0459 (7)0.0586 (8)0.0005 (6)0.0026 (7)0.0066 (6)
C150.0578 (9)0.0578 (9)0.0800 (12)0.0053 (7)0.0007 (9)0.0111 (9)
C160.0501 (11)0.150 (2)0.0910 (16)0.0072 (12)0.0129 (10)0.0378 (15)
C170.0953 (15)0.0592 (10)0.0664 (11)0.0078 (9)0.0073 (11)0.0132 (8)
Geometric parameters (Å, º) top
O1—C71.2156 (17)C9—C141.400 (2)
N1—C71.3401 (17)C10—C111.377 (2)
N1—N21.3842 (16)C10—H10A0.9300
N1—H1A0.832 (15)C11—C121.374 (3)
N2—C81.2723 (18)C11—H11A0.9300
C1—C21.378 (2)C12—C131.376 (3)
C1—C61.387 (2)C12—H12A0.9300
C1—H1B0.9300C13—C141.384 (2)
C2—C31.378 (3)C13—H13A0.9300
C2—H2B0.9300C14—C151.500 (2)
C3—C41.384 (3)C15—H15A0.9600
C3—C161.507 (2)C15—H15B0.9600
C4—C51.393 (2)C15—H15C0.9600
C4—H4A0.9300C16—H16A0.9600
C5—C61.401 (2)C16—H16B0.9600
C5—C171.500 (2)C16—H16C0.9600
C6—C71.4933 (19)C17—H17A0.9600
C8—C91.4675 (19)C17—H17B0.9600
C8—H8A0.9300C17—H17C0.9600
C9—C101.392 (2)
C7—N1—N2120.73 (11)C11—C10—H10A119.4
C7—N1—H1A120.4 (10)C9—C10—H10A119.4
N2—N1—H1A118.9 (10)C12—C11—C10119.26 (16)
C8—N2—N1114.66 (11)C12—C11—H11A120.4
C2—C1—C6121.07 (15)C10—C11—H11A120.4
C2—C1—H1B119.5C11—C12—C13120.04 (15)
C6—C1—H1B119.5C11—C12—H12A120.0
C1—C2—C3120.80 (16)C13—C12—H12A120.0
C1—C2—H2B119.6C12—C13—C14122.03 (16)
C3—C2—H2B119.6C12—C13—H13A119.0
C2—C3—C4117.73 (14)C14—C13—H13A119.0
C2—C3—C16121.07 (18)C13—C14—C9117.84 (15)
C4—C3—C16121.17 (18)C13—C14—C15120.58 (15)
C3—C4—C5123.35 (14)C9—C14—C15121.54 (14)
C3—C4—H4A118.3C14—C15—H15A109.5
C5—C4—H4A118.3C14—C15—H15B109.5
C4—C5—C6117.36 (14)H15A—C15—H15B109.5
C4—C5—C17120.09 (15)C14—C15—H15C109.5
C6—C5—C17122.54 (15)H15A—C15—H15C109.5
C1—C6—C5119.67 (13)H15B—C15—H15C109.5
C1—C6—C7119.13 (13)C3—C16—H16A109.5
C5—C6—C7121.19 (13)C3—C16—H16B109.5
O1—C7—N1122.42 (14)H16A—C16—H16B109.5
O1—C7—C6123.16 (13)C3—C16—H16C109.5
N1—C7—C6114.42 (11)H16A—C16—H16C109.5
N2—C8—C9120.62 (12)H16B—C16—H16C109.5
N2—C8—H8A119.7C5—C17—H17A109.5
C9—C8—H8A119.7C5—C17—H17B109.5
C10—C9—C14119.67 (14)H17A—C17—H17B109.5
C10—C9—C8120.32 (13)C5—C17—H17C109.5
C14—C9—C8120.01 (13)H17A—C17—H17C109.5
C11—C10—C9121.14 (15)H17B—C17—H17C109.5
C7—N1—N2—C8170.77 (14)C5—C6—C7—O149.4 (2)
C6—C1—C2—C30.8 (2)C1—C6—C7—N149.99 (18)
C1—C2—C3—C41.3 (2)C5—C6—C7—N1130.66 (14)
C1—C2—C3—C16176.88 (17)N1—N2—C8—C9176.93 (12)
C2—C3—C4—C51.2 (2)N2—C8—C9—C1030.9 (2)
C16—C3—C4—C5177.01 (16)N2—C8—C9—C14149.45 (15)
C3—C4—C5—C60.5 (2)C14—C9—C10—C110.6 (2)
C3—C4—C5—C17178.19 (16)C8—C9—C10—C11179.71 (15)
C2—C1—C6—C50.0 (2)C9—C10—C11—C121.2 (3)
C2—C1—C6—C7179.36 (14)C10—C11—C12—C130.9 (3)
C4—C5—C6—C10.16 (19)C11—C12—C13—C140.0 (3)
C17—C5—C6—C1178.77 (14)C12—C13—C14—C90.6 (2)
C4—C5—C6—C7179.50 (12)C12—C13—C14—C15177.14 (17)
C17—C5—C6—C71.9 (2)C10—C9—C14—C130.2 (2)
N2—N1—C7—O12.7 (3)C8—C9—C14—C13179.43 (14)
N2—N1—C7—C6177.21 (12)C10—C9—C14—C15177.45 (15)
C1—C6—C7—O1129.9 (2)C8—C9—C14—C152.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.833 (15)2.000 (15)2.8150 (14)166.1 (14)
C8—H8A···O1i0.932.523.2696 (19)138
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H18N2O
Mr266.33
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)273
a, b, c (Å)26.1151 (10), 4.9484 (2), 11.3933 (4)
V3)1472.33 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.55 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.959, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8023, 2577, 2483
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections2577
No. of parameters189
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.833 (15)2.000 (15)2.8150 (14)166.1 (14)
C8—H8A···O1i0.932.523.2696 (19)138
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors would like to acknowledge the Research Management Institute of UiTM for financial support under the Dana Kecemerlangan Grant Scheme [grant No. 600-RMI/DANA 5/3 RIF (143/2012)].

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, K. M., Taha, M., Naz, F., Siddiqui, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710.  Web of Science CAS PubMed Google Scholar
First citationMusharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779–789.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNaz, H., Taha, M., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2671.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012a). Acta Cryst. E68, o2778.  CSD CrossRef IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012b). Acta Cryst. E68, o2780.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds