organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium toluene-4-sulfon­ate

aInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland
*Correspondence e-mail: k.brzezinski@uwb.edu.pl

(Received 24 January 2013; accepted 29 January 2013; online 2 February 2013)

There are two tetra­ethyl­ammonium cations and two toluene-4-sulfate anions in the asymmetric unit of the title salt, C8H20N+·C7H7O3S. One of the anions is disordered over two positions, with refined occupancies of 0.447 (3) and 0.553 (3). In the crystal, the cations and anions are linked by C—H⋯O hydrogen bonds, forming ribbons along [10-1]. The ribbons are linked via C—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (10-1).

Related literature

For the preparation of tetra­ethyl­ammonium toluene-4-sulfonate from ethyl 4-toluene­sulfonate and triethyl­amine, see: Baizer (1964[Baizer, M. M. (1964). J. Electrochem. Soc. 111, 215-222.]). For its application as a phase-transfer catalyst, see: Cerveau et al. (2002[Cerveau, G., Chappellet, S., Corriu, R. J. P., Dabiens, B. & Le Bideau, J. (2002). Organometallics, 21, 1560-1564.]) or as the supporting electrolyte, see: Adachi et al. (1979[Adachi, T., Iwasaki, T., Inoue, I. & Miyoshi, M. (1979). J. Org. Chem. 44, 1404-1409.]); Wynne & Street (1985[Wynne, K. J. & Street, G. B. (1985). Macromolecules, 18, 2361-2368.]); Yoshida et al. (1986[Yoshida, J., Muraki, K., Funahashi, H. & Kawabata, N. (1986). J. Org. Chem. 51, 3996-4000.]); Wong & Moeller (1993[Wong, P. L. & Moeller, D. K. (1993). J. Am. Chem. Soc. 115, 11434-11445.]); Ben et al. (2011[Ben, T., Shi, K., Cui, Y., Pei, C., Zuo, Y., Guo, H., Zhang, D., Xu, J., Deng, F., Tian, Z. & Qiu, S. (2011). J. Mater. Chem. 21, 18208-18214.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C7H7O3S

  • Mr = 301.21

  • Monoclinic, P 21 /n

  • a = 16.8771 (3) Å

  • b = 7.53713 (16) Å

  • c = 26.2404 (6) Å

  • β = 97.2938 (18)°

  • V = 3310.90 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.8 × 0.6 × 0.3 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.771, Tmax = 1.000

  • 6276 measured reflections

  • 6276 independent reflections

  • 5477 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.163

  • S = 1.19

  • 6276 reflections

  • 406 parameters

  • 82 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6B—H6B⋯O23 0.95 2.57 3.351 (6) 140
C31—H31B⋯O3Bi 0.99 2.49 3.344 (4) 145
C33—H33A⋯O2B 0.99 2.47 3.354 (4) 148
C35—H35A⋯O22ii 0.99 2.42 3.228 (4) 138
C36—H36C⋯O3Biii 0.98 2.58 3.544 (4) 169
C43—H43B⋯O22 0.99 2.44 3.269 (4) 141
C45—H45A⋯O2B 0.99 2.53 3.367 (4) 142
C47—H47A⋯O3Bi 0.99 2.57 3.440 (4) 147
C48—H48B⋯O22iv 0.98 2.58 3.562 (4) 175
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetraethylammonium toluene-4-sulfonate is applied as the phase-transfer catalyst in the preparation of bis-silanetriols (Cerveau et al., 2002). The compound is also widely used in electrochemistry as the supporting electrolyte (Wynne et al., 1985; Yoshida et al., 1986; Wong et al., 1993; Ben et al., 2011), because it could be easly removed from the reaction by the extraction with water (Adachi et al., 1979).

The asymmetric unit contains two tetraethylammonium cations and two toluene-4-sulfate anions (Fig. 1). One of the toluene-4-sulfate ions is disordered and is modeled in the two locations. The occupancy of two major positions in the final model is refined to 0.447 (3) and 0.553 (3). Within the crystal lattice the columns of cations and anions are formed along b and ac directions (Figs. 2 and 3, respectively).

Related literature top

For the preparation of tetraethylammonium toluene-4-sulfonate from ethyl 4-toluenesulfonate and triethylamine, see: Baizer (1964). For its application as a phase-transfer catalyst, see: Cerveau et al. (2002) or as the supporting electrolyte, see: Adachi et al. (1979); Wynne & Street (1985); Yoshida et al. (1986); Wong & Moeller (1993); Ben et al. (2011).

Experimental top

The title compound was prepared according to the procedure described by Baizer (1964). Briefly, ethyl toluene-4-sulfonate (200 g, 1.0 mole) was dissolved in 100 mL of anhydrous ethanol and triethylamine was added (101 g, 1.0 mole). The reaction mixture was stirred and heated under reflux for 6 h. The excess of triethylamine and ethanol was removed in vacuo. The crude product was washed several times with a dry ethylether and recrystallized from ethanol.

Refinement top

The disordered toluene-4-sulfate anion is modeled at the two locations with geometric (FLAT instruction) and dispacement parameter (SIMU instruction) restraints and with AFIX 66, EADP and EXYZ constraints. Seven reflections for which I(obs) and I(calc) differed more then 10 times SigmaW were ommited from the refinement. All H atoms were initially located in electron density difference maps. Hydrogen atoms were constrained to idealised positions with C—H distances fixed at 0.95–0.99 Å and 1.5Ueq(C) for methyl hydrogen atoms and 1.2Ueq(C) for others.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. For clarity, only more populated location of the disordered anion (B) is shown.
[Figure 2] Fig. 2. Crystal packing viewed along b direction. For clarity, hydrogen atoms are ommited.
[Figure 3] Fig. 3. Crystal packing viewed along ac direction. For clarity, hydrogen atoms are ommited.
Tetraethylammonium toluene-4-sulfonate top
Crystal data top
C8H20N+·C7H7O3SF(000) = 1312
Mr = 301.21Dx = 1.209 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9780 reflections
a = 16.8771 (3) Åθ = 2.6–25.6°
b = 7.53713 (16) ŵ = 0.20 mm1
c = 26.2404 (6) ÅT = 100 K
β = 97.2938 (18)°Plate, colourless
V = 3310.90 (12) Å30.8 × 0.6 × 0.3 mm
Z = 8
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6276 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5477 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4052 pixels mm-1θmax = 25.7°, θmin = 2.7°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 09
Tmin = 0.771, Tmax = 1.000l = 031
6276 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0161P)2 + 13.1727P]
where P = (Fo2 + 2Fc2)/3
6276 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 0.46 e Å3
82 restraintsΔρmin = 0.50 e Å3
Crystal data top
C8H20N+·C7H7O3SV = 3310.90 (12) Å3
Mr = 301.21Z = 8
Monoclinic, P21/nMo Kα radiation
a = 16.8771 (3) ŵ = 0.20 mm1
b = 7.53713 (16) ÅT = 100 K
c = 26.2404 (6) Å0.8 × 0.6 × 0.3 mm
β = 97.2938 (18)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6276 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5477 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.050
6276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07682 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0161P)2 + 13.1727P]
where P = (Fo2 + 2Fc2)/3
6276 reflectionsΔρmax = 0.46 e Å3
406 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.4305 (4)0.3064 (10)0.48865 (18)0.0178 (18)0.447 (3)
C2A0.4856 (3)0.3393 (9)0.5316 (2)0.0227 (19)0.447 (3)
H2A0.53900.37040.52760.027*0.447 (3)
C3A0.4626 (4)0.3266 (9)0.58052 (18)0.0182 (18)0.447 (3)
H3A0.50020.34910.60990.022*0.447 (3)
C4A0.3845 (4)0.2811 (15)0.5864 (3)0.019 (4)0.447 (3)
C5A0.3293 (3)0.2482 (18)0.5434 (4)0.0163 (8)0.447 (3)
H5A0.27600.21710.54750.020*0.447 (3)
C6A0.3524 (3)0.2609 (15)0.4946 (3)0.017 (4)0.447 (3)
H6A0.31470.23840.46520.021*0.447 (3)
C7A0.4550 (6)0.3225 (15)0.4349 (4)0.032 (2)0.447 (3)
H7AA0.48830.22080.42810.048*0.447 (3)
H7AB0.48530.43240.43240.048*0.447 (3)
H7AC0.40710.32480.40950.048*0.447 (3)
O1A0.41953 (15)0.2857 (4)0.68544 (10)0.0208 (6)0.447 (3)
O2A0.29813 (16)0.4298 (3)0.64542 (10)0.0208 (6)0.447 (3)
O3A0.30363 (16)0.1087 (3)0.65189 (10)0.0208 (6)0.447 (3)
S1A0.34859 (5)0.27202 (12)0.64777 (3)0.0152 (2)0.447 (3)
C1B0.4338 (4)0.1902 (9)0.49086 (17)0.0330 (19)0.553 (3)
C2B0.4878 (3)0.1764 (9)0.5353 (2)0.039 (2)0.553 (3)
H2B0.54210.14820.53300.047*0.553 (3)
C3B0.4624 (3)0.2038 (10)0.58303 (17)0.033 (2)0.553 (3)
H3B0.49930.19430.61340.039*0.553 (3)
C4B0.3829 (4)0.2450 (13)0.5863 (2)0.016 (3)0.553 (3)
C5B0.3289 (3)0.2588 (15)0.5419 (3)0.0163 (8)0.55
H5B0.27460.28700.54420.020*0.553 (3)
C6B0.3543 (3)0.2314 (13)0.4942 (2)0.027 (4)0.553 (3)
H6B0.31740.24090.46380.033*0.553 (3)
C7B0.4610 (6)0.1629 (15)0.4382 (3)0.046 (2)0.553 (3)
H7BA0.49960.06510.43990.069*0.553 (3)
H7BB0.48630.27170.42770.069*0.553 (3)
H7BC0.41480.13420.41300.069*0.553 (3)
O1B0.41953 (15)0.2857 (4)0.68544 (10)0.0208 (6)0.55
O2B0.29813 (16)0.4298 (3)0.64542 (10)0.0208 (6)0.55
O3B0.30363 (16)0.1087 (3)0.65189 (10)0.0208 (6)0.55
S1B0.34859 (5)0.27202 (12)0.64777 (3)0.0152 (2)0.55
C410.1861 (2)0.9052 (5)0.48107 (14)0.0197 (8)
H41A0.23230.98140.49350.024*
H41B0.13870.98300.47410.024*
C420.2016 (3)0.8186 (6)0.43110 (15)0.0294 (10)
H42A0.20350.90990.40470.044*
H42B0.15860.73440.42000.044*
H42C0.25280.75550.43630.044*
C430.0994 (2)0.6613 (5)0.50777 (14)0.0198 (8)
H43A0.09080.58410.53710.024*
H43B0.11050.58340.47910.024*
C440.0231 (2)0.7642 (5)0.49120 (15)0.0233 (8)
H44A0.02980.83620.46090.035*
H44B0.01150.84190.51930.035*
H44C0.02120.68100.48270.035*
C450.2424 (2)0.6505 (5)0.53511 (14)0.0196 (8)
H45A0.23180.57170.56370.024*
H45B0.24570.57490.50460.024*
C460.3226 (2)0.7396 (6)0.54957 (17)0.0284 (9)
H46A0.33610.80960.52040.043*
H46B0.36360.64900.55850.043*
H46C0.31970.81780.57910.043*
C470.1613 (2)0.8873 (5)0.57032 (13)0.0175 (8)
H47A0.21020.95860.57980.021*
H47B0.11660.97100.56100.021*
C480.1444 (2)0.7823 (5)0.61699 (14)0.0194 (8)
H48A0.18600.69220.62500.029*
H48B0.09220.72430.60980.029*
H48C0.14410.86260.64630.029*
N410.17227 (17)0.7763 (4)0.52337 (11)0.0143 (6)
C310.4385 (2)0.8762 (5)0.72905 (13)0.0171 (8)
H31A0.48680.94640.74130.021*
H31B0.39360.96050.72140.021*
C320.4520 (3)0.7833 (6)0.67967 (15)0.0260 (9)
H32A0.50040.71050.68570.039*
H32B0.45830.87200.65320.039*
H32C0.40610.70740.66820.039*
C330.3440 (2)0.6490 (5)0.75647 (13)0.0148 (7)
H33A0.35270.56920.72770.018*
H33B0.33330.57370.78580.018*
C340.2712 (2)0.7617 (5)0.74017 (14)0.0178 (8)
H34A0.25990.83620.76900.027*
H34B0.22520.68480.72960.027*
H34C0.28110.83740.71130.027*
C350.4117 (2)0.8715 (5)0.81795 (13)0.0174 (8)
H35A0.46180.93970.82640.021*
H35B0.36840.95800.80800.021*
C360.3941 (2)0.7765 (5)0.86586 (14)0.0196 (8)
H36A0.39160.86290.89350.029*
H36B0.43640.69010.87630.029*
H36C0.34270.71490.85890.029*
C370.4863 (2)0.6190 (5)0.78468 (15)0.0181 (8)
H37A0.48840.54270.75420.022*
H37B0.47230.54240.81290.022*
C380.5688 (2)0.6967 (6)0.80046 (17)0.0284 (9)
H38A0.56700.77680.82970.043*
H38B0.58580.76280.77160.043*
H38C0.60680.60060.81030.043*
N310.42024 (17)0.7550 (4)0.77214 (11)0.0140 (6)
C210.1825 (2)0.3831 (5)0.24019 (15)0.0222 (8)
C220.1070 (2)0.3169 (5)0.24493 (14)0.0173 (8)
H220.07170.28950.21480.021*
C230.0824 (2)0.2902 (5)0.29249 (14)0.0156 (7)
H230.03030.24600.29470.019*
C240.1334 (2)0.3274 (4)0.33731 (14)0.0140 (7)
C250.2094 (2)0.3924 (5)0.33320 (15)0.0204 (8)
H250.24500.41740.36330.025*
C260.2332 (2)0.4210 (6)0.28522 (16)0.0264 (9)
H260.28490.46720.28290.032*
C270.2089 (3)0.4133 (6)0.18794 (16)0.0331 (10)
H27A0.16260.44490.16330.050*
H27B0.23330.30460.17660.050*
H27C0.24810.51000.19010.050*
O210.05965 (16)0.1235 (3)0.39491 (10)0.0215 (6)
O220.04246 (15)0.4433 (3)0.40172 (9)0.0194 (6)
O230.16880 (16)0.3076 (4)0.43637 (10)0.0235 (6)
S210.09844 (5)0.29743 (12)0.39789 (3)0.0154 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.019 (4)0.016 (4)0.019 (4)0.009 (4)0.005 (3)0.004 (4)
C2A0.015 (4)0.033 (5)0.021 (4)0.002 (4)0.005 (3)0.003 (4)
C3A0.016 (4)0.010 (4)0.027 (5)0.004 (3)0.005 (3)0.002 (4)
C4A0.022 (7)0.019 (6)0.015 (7)0.003 (4)0.003 (5)0.005 (4)
C5A0.0181 (18)0.012 (2)0.019 (2)0.0004 (14)0.0032 (15)0.0023 (15)
C6A0.023 (8)0.014 (5)0.011 (7)0.008 (5)0.008 (6)0.001 (4)
C7A0.030 (5)0.051 (7)0.018 (5)0.003 (5)0.014 (4)0.006 (4)
O1A0.0218 (14)0.0225 (14)0.0168 (13)0.0000 (11)0.0033 (11)0.0001 (11)
O2A0.0254 (14)0.0151 (13)0.0217 (14)0.0038 (11)0.0027 (11)0.0016 (11)
O3A0.0260 (14)0.0123 (13)0.0239 (14)0.0019 (11)0.0020 (11)0.0002 (11)
S1A0.0177 (5)0.0139 (4)0.0137 (5)0.0012 (3)0.0005 (3)0.0003 (3)
C1B0.038 (5)0.035 (5)0.027 (4)0.012 (4)0.009 (3)0.008 (4)
C2B0.025 (4)0.060 (6)0.034 (5)0.002 (4)0.006 (3)0.005 (4)
C3B0.018 (4)0.059 (6)0.020 (4)0.002 (4)0.000 (3)0.003 (4)
C4B0.019 (6)0.010 (4)0.019 (6)0.000 (3)0.003 (4)0.008 (3)
C5B0.0181 (18)0.012 (2)0.019 (2)0.0004 (14)0.0032 (15)0.0023 (15)
C6B0.034 (8)0.024 (5)0.025 (8)0.013 (5)0.008 (6)0.000 (4)
C7B0.042 (5)0.070 (7)0.029 (5)0.009 (5)0.012 (4)0.009 (5)
O1B0.0218 (14)0.0225 (14)0.0168 (13)0.0000 (11)0.0033 (11)0.0001 (11)
O2B0.0254 (14)0.0151 (13)0.0217 (14)0.0038 (11)0.0027 (11)0.0016 (11)
O3B0.0260 (14)0.0123 (13)0.0239 (14)0.0019 (11)0.0020 (11)0.0002 (11)
S1B0.0177 (5)0.0139 (4)0.0137 (5)0.0012 (3)0.0005 (3)0.0003 (3)
C410.0232 (19)0.0195 (19)0.0164 (19)0.0010 (16)0.0024 (15)0.0068 (15)
C420.039 (2)0.032 (2)0.019 (2)0.0084 (19)0.0101 (18)0.0072 (17)
C430.0232 (19)0.0184 (19)0.0166 (19)0.0037 (16)0.0019 (15)0.0031 (15)
C440.0212 (19)0.027 (2)0.020 (2)0.0043 (16)0.0015 (15)0.0027 (16)
C450.0230 (19)0.0193 (19)0.0165 (19)0.0055 (16)0.0029 (15)0.0014 (15)
C460.019 (2)0.030 (2)0.036 (2)0.0045 (17)0.0011 (17)0.0095 (19)
C470.0221 (19)0.0155 (18)0.0141 (18)0.0006 (15)0.0005 (14)0.0023 (14)
C480.026 (2)0.0190 (19)0.0135 (18)0.0012 (16)0.0025 (15)0.0004 (15)
N410.0164 (15)0.0150 (15)0.0112 (15)0.0019 (12)0.0000 (12)0.0002 (12)
C310.0194 (18)0.0154 (18)0.0161 (18)0.0038 (14)0.0008 (14)0.0052 (14)
C320.034 (2)0.027 (2)0.019 (2)0.0003 (18)0.0076 (17)0.0053 (17)
C330.0171 (17)0.0138 (17)0.0131 (17)0.0049 (14)0.0003 (14)0.0016 (14)
C340.0153 (17)0.0177 (19)0.0197 (19)0.0031 (14)0.0003 (14)0.0022 (15)
C350.0247 (19)0.0124 (17)0.0138 (18)0.0006 (15)0.0022 (14)0.0035 (14)
C360.025 (2)0.0194 (19)0.0134 (18)0.0016 (16)0.0002 (15)0.0023 (15)
C370.0175 (18)0.0132 (18)0.023 (2)0.0022 (14)0.0009 (15)0.0030 (15)
C380.020 (2)0.024 (2)0.039 (3)0.0002 (17)0.0049 (18)0.0075 (19)
N310.0175 (15)0.0100 (14)0.0139 (15)0.0013 (12)0.0013 (12)0.0005 (12)
C210.024 (2)0.0189 (19)0.026 (2)0.0070 (16)0.0124 (16)0.0057 (16)
C220.0203 (18)0.0142 (18)0.0168 (18)0.0034 (15)0.0004 (14)0.0006 (14)
C230.0152 (17)0.0109 (17)0.0205 (19)0.0004 (14)0.0020 (14)0.0003 (14)
C240.0150 (17)0.0085 (16)0.0189 (18)0.0041 (13)0.0034 (14)0.0017 (13)
C250.0157 (18)0.022 (2)0.023 (2)0.0026 (15)0.0009 (15)0.0019 (16)
C260.0158 (18)0.031 (2)0.034 (2)0.0025 (16)0.0065 (16)0.0013 (18)
C270.033 (2)0.041 (3)0.028 (2)0.004 (2)0.0165 (19)0.007 (2)
O210.0262 (14)0.0200 (14)0.0192 (14)0.0025 (11)0.0066 (11)0.0029 (11)
O220.0215 (13)0.0209 (14)0.0155 (13)0.0042 (11)0.0016 (10)0.0017 (11)
O230.0229 (14)0.0278 (15)0.0179 (14)0.0058 (12)0.0043 (11)0.0020 (11)
S210.0169 (4)0.0156 (4)0.0132 (4)0.0035 (3)0.0005 (3)0.0005 (3)
Geometric parameters (Å, º) top
C1A—C2A1.3900C47—C481.515 (5)
C1A—C6A1.3900C47—N411.520 (4)
C1A—C7A1.525 (10)C47—H47A0.9900
C2A—C3A1.3900C47—H47B0.9900
C2A—H2A0.9500C48—H48A0.9800
C3A—C4A1.3900C48—H48B0.9800
C3A—H3A0.9500C48—H48C0.9800
C4A—C5A1.3900C31—N311.515 (4)
C4A—S1A1.792 (5)C31—C321.516 (5)
C5A—C6A1.3900C31—H31A0.9900
C5A—H5A0.9500C31—H31B0.9900
C6A—H6A0.9500C32—H32A0.9800
C7A—H7AA0.9800C32—H32B0.9800
C7A—H7AB0.9800C32—H32C0.9800
C7A—H7AC0.9800C33—C341.511 (5)
O1A—S1A1.456 (3)C33—N311.526 (4)
O2A—S1A1.460 (3)C33—H33A0.9900
O3A—S1A1.457 (3)C33—H33B0.9900
C1B—C2B1.3900C34—H34A0.9800
C1B—C6B1.3900C34—H34B0.9800
C1B—C7B1.526 (9)C34—H34C0.9800
C2B—C3B1.3900C35—C361.509 (5)
C2B—H2B0.9500C35—N311.510 (4)
C3B—C4B1.3900C35—H35A0.9900
C3B—H3B0.9500C35—H35B0.9900
C4B—C5B1.3900C36—H36A0.9800
C5B—C6B1.3900C36—H36B0.9800
C5B—H5B0.9500C36—H36C0.9800
C6B—H6B0.9500C37—N311.519 (4)
C7B—H7BA0.9800C37—C381.518 (5)
C7B—H7BB0.9800C37—H37A0.9900
C7B—H7BC0.9800C37—H37B0.9900
C41—N411.516 (4)C38—H38A0.9800
C41—C421.517 (5)C38—H38B0.9800
C41—H41A0.9900C38—H38C0.9800
C41—H41B0.9900C21—C221.389 (5)
C42—H42A0.9800C21—C261.397 (6)
C42—H42B0.9800C21—C271.512 (5)
C42—H42C0.9800C22—C231.379 (5)
C43—N411.517 (5)C22—H220.9500
C43—C441.519 (5)C23—C241.395 (5)
C43—H43A0.9900C23—H230.9500
C43—H43B0.9900C24—C251.389 (5)
C44—H44A0.9800C24—S211.779 (4)
C44—H44B0.9800C25—C261.386 (6)
C44—H44C0.9800C25—H250.9500
C45—C461.515 (5)C26—H260.9500
C45—N411.517 (4)C27—H27A0.9800
C45—H45A0.9900C27—H27B0.9800
C45—H45B0.9900C27—H27C0.9800
C46—H46A0.9800O21—S211.463 (3)
C46—H46B0.9800O22—S211.461 (3)
C46—H46C0.9800O23—S211.460 (3)
C2A—C1A—C6A120.0H48A—C48—H48C109.5
C2A—C1A—C7A120.3 (6)H48B—C48—H48C109.5
C6A—C1A—C7A119.7 (6)C41—N41—C43111.3 (3)
C3A—C2A—C1A120.0C41—N41—C45111.1 (3)
C3A—C2A—H2A120.0C43—N41—C45106.4 (3)
C1A—C2A—H2A120.0C41—N41—C47106.7 (3)
C2A—C3A—C4A120.0C43—N41—C47110.8 (3)
C2A—C3A—H3A120.0C45—N41—C47110.6 (3)
C4A—C3A—H3A120.0N31—C31—C32115.2 (3)
C5A—C4A—C3A120.0N31—C31—H31A108.5
C5A—C4A—S1A117.0 (5)C32—C31—H31A108.5
C3A—C4A—S1A122.9 (5)N31—C31—H31B108.5
C4A—C5A—C6A120.0C32—C31—H31B108.5
C4A—C5A—H5A120.0H31A—C31—H31B107.5
C6A—C5A—H5A120.0C31—C32—H32A109.5
C5A—C6A—C1A120.0C31—C32—H32B109.5
C5A—C6A—H6A120.0H32A—C32—H32B109.5
C1A—C6A—H6A120.0C31—C32—H32C109.5
O1A—S1A—O3A113.61 (16)H32A—C32—H32C109.5
O1A—S1A—O2A113.33 (16)H32B—C32—H32C109.5
O3A—S1A—O2A112.64 (15)C34—C33—N31114.2 (3)
O1A—S1A—C4A105.4 (3)C34—C33—H33A108.7
O3A—S1A—C4A109.7 (4)N31—C33—H33A108.7
O2A—S1A—C4A101.1 (4)C34—C33—H33B108.7
C2B—C1B—C6B120.0N31—C33—H33B108.7
C2B—C1B—C7B120.6 (5)H33A—C33—H33B107.6
C6B—C1B—C7B119.4 (5)C33—C34—H34A109.5
C3B—C2B—C1B120.0C33—C34—H34B109.5
C3B—C2B—H2B120.0H34A—C34—H34B109.5
C1B—C2B—H2B120.0C33—C34—H34C109.5
C4B—C3B—C2B120.0H34A—C34—H34C109.5
C4B—C3B—H3B120.0H34B—C34—H34C109.5
C2B—C3B—H3B120.0C36—C35—N31115.8 (3)
C3B—C4B—C5B120.0C36—C35—H35A108.3
C6B—C5B—C4B120.0N31—C35—H35A108.3
C6B—C5B—H5B120.0C36—C35—H35B108.3
C4B—C5B—H5B120.0N31—C35—H35B108.3
C5B—C6B—C1B120.0H35A—C35—H35B107.4
C5B—C6B—H6B120.0C35—C36—H36A109.5
C1B—C6B—H6B120.0C35—C36—H36B109.5
C1B—C7B—H7BA109.5H36A—C36—H36B109.5
C1B—C7B—H7BB109.5C35—C36—H36C109.5
H7BA—C7B—H7BB109.5H36A—C36—H36C109.5
C1B—C7B—H7BC109.5H36B—C36—H36C109.5
H7BA—C7B—H7BC109.5N31—C37—C38114.9 (3)
H7BB—C7B—H7BC109.5N31—C37—H37A108.5
N41—C41—C42114.6 (3)C38—C37—H37A108.5
N41—C41—H41A108.6N31—C37—H37B108.5
C42—C41—H41A108.6C38—C37—H37B108.5
N41—C41—H41B108.6H37A—C37—H37B107.5
C42—C41—H41B108.6C37—C38—H38A109.5
H41A—C41—H41B107.6C37—C38—H38B109.5
C41—C42—H42A109.5H38A—C38—H38B109.5
C41—C42—H42B109.5C37—C38—H38C109.5
H42A—C42—H42B109.5H38A—C38—H38C109.5
C41—C42—H42C109.5H38B—C38—H38C109.5
H42A—C42—H42C109.5C35—N31—C31107.0 (3)
H42B—C42—H42C109.5C35—N31—C37111.2 (3)
N41—C43—C44114.4 (3)C31—N31—C37110.8 (3)
N41—C43—H43A108.6C35—N31—C33110.9 (3)
C44—C43—H43A108.6C31—N31—C33111.0 (3)
N41—C43—H43B108.6C37—N31—C33106.0 (3)
C44—C43—H43B108.6C22—C21—C26117.9 (3)
H43A—C43—H43B107.6C22—C21—C27121.0 (4)
C43—C44—H44A109.5C26—C21—C27121.2 (4)
C43—C44—H44B109.5C23—C22—C21121.2 (3)
H44A—C44—H44B109.5C23—C22—H22119.4
C43—C44—H44C109.5C21—C22—H22119.4
H44A—C44—H44C109.5C22—C23—C24120.6 (3)
H44B—C44—H44C109.5C22—C23—H23119.7
C46—C45—N41115.0 (3)C24—C23—H23119.7
C46—C45—H45A108.5C25—C24—C23118.8 (3)
N41—C45—H45A108.5C25—C24—S21121.9 (3)
C46—C45—H45B108.5C23—C24—S21119.3 (3)
N41—C45—H45B108.5C26—C25—C24120.1 (3)
H45A—C45—H45B107.5C26—C25—H25119.9
C45—C46—H46A109.5C24—C25—H25119.9
C45—C46—H46B109.5C25—C26—C21121.3 (4)
H46A—C46—H46B109.5C25—C26—H26119.3
C45—C46—H46C109.5C21—C26—H26119.3
H46A—C46—H46C109.5C21—C27—H27A109.5
H46B—C46—H46C109.5C21—C27—H27B109.5
C48—C47—N41115.0 (3)H27A—C27—H27B109.5
C48—C47—H47A108.5C21—C27—H27C109.5
N41—C47—H47A108.5H27A—C27—H27C109.5
C48—C47—H47B108.5H27B—C27—H27C109.5
N41—C47—H47B108.5O23—S21—O22112.92 (16)
H47A—C47—H47B107.5O23—S21—O21113.78 (16)
C47—C48—H48A109.5O22—S21—O21112.88 (16)
C47—C48—H48B109.5O23—S21—C24106.16 (16)
H48A—C48—H48B109.5O22—S21—C24104.88 (15)
C47—C48—H48C109.5O21—S21—C24105.23 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6B—H6B···O230.952.573.351 (6)140
C31—H31B···O3Bi0.992.493.344 (4)145
C33—H33A···O2B0.992.473.354 (4)148
C35—H35A···O22ii0.992.423.228 (4)138
C36—H36C···O3Biii0.982.583.544 (4)169
C43—H43B···O220.992.443.269 (4)141
C45—H45A···O2B0.992.533.367 (4)142
C47—H47A···O3Bi0.992.573.440 (4)147
C48—H48B···O22iv0.982.583.562 (4)175
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H20N+·C7H7O3S
Mr301.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)16.8771 (3), 7.53713 (16), 26.2404 (6)
β (°) 97.2938 (18)
V3)3310.90 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.8 × 0.6 × 0.3
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.771, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6276, 6276, 5477
Rint0.050
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.163, 1.19
No. of reflections6276
No. of parameters406
No. of restraints82
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0161P)2 + 13.1727P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.46, 0.50

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6B—H6B···O230.952.573.351 (6)140
C31—H31B···O3Bi0.992.493.344 (4)145
C33—H33A···O2B0.992.473.354 (4)148
C35—H35A···O22ii0.992.423.228 (4)138
C36—H36C···O3Biii0.982.583.544 (4)169
C43—H43B···O220.992.443.269 (4)141
C45—H45A···O2B0.992.533.367 (4)142
C47—H47A···O3Bi0.992.573.440 (4)147
C48—H48B···O22iv0.982.583.562 (4)175
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1.
 

Acknowledgements

The X-ray diffractometer was funded by the EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project POPW.01.03.00–20-034/09–00.

References

First citationAdachi, T., Iwasaki, T., Inoue, I. & Miyoshi, M. (1979). J. Org. Chem. 44, 1404–1409.  CrossRef CAS Web of Science Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaizer, M. M. (1964). J. Electrochem. Soc. 111, 215–222.  CrossRef CAS Web of Science Google Scholar
First citationBen, T., Shi, K., Cui, Y., Pei, C., Zuo, Y., Guo, H., Zhang, D., Xu, J., Deng, F., Tian, Z. & Qiu, S. (2011). J. Mater. Chem. 21, 18208–18214.  Web of Science CrossRef CAS Google Scholar
First citationCerveau, G., Chappellet, S., Corriu, R. J. P., Dabiens, B. & Le Bideau, J. (2002). Organometallics, 21, 1560–1564.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, P. L. & Moeller, D. K. (1993). J. Am. Chem. Soc. 115, 11434–11445.  CrossRef CAS Web of Science Google Scholar
First citationWynne, K. J. & Street, G. B. (1985). Macromolecules, 18, 2361–2368.  CrossRef CAS Web of Science Google Scholar
First citationYoshida, J., Muraki, K., Funahashi, H. & Kawabata, N. (1986). J. Org. Chem. 51, 3996–4000.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds