organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o398-o399

N,N-Di­ethyl­anilinium 5-(5-chloro-2,4-di­nitro­phen­yl)-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 31 January 2013; accepted 13 February 2013; online 20 February 2013)

In the anion of the title salt, C10H16N+·C10H4ClN4O7 [trivial name = N,N-diethyl­anilinium 5-(3-chloro-4,6,-dinitro­phen­yl)barbiturate], the dihedral angle between the benzene and pyrimidine rings is 45.49 (6)°. The mean plane of the nitro group, which is ortho-substituted with respect to the pyrimidine ring, is twisted by 41.57 (13)° from the benzene ring, while the mean plane of the nitro group, which is para-substituted, is twisted by 14.41 (12)° from this ring. In the crystal, N—H⋯O hydrogen bonds link cations and anions into chains along [1-10]. Within the chains, inversion-related anionic barbiturate anions form R22(8) ring motifs.

Related literature

For different types of inter­actions between electron-deficient nitro aromatics and bases, see: Jackson & Gazzolo (1900[Jackson, C. J. & Gazzolo, F. H. (1900). Am. Chem. J. 23, 376-396.]); Mulliken (1952[Mulliken, R. S. (1952). J. Am. Chem. Soc. 74, 811-824.]); Russell & Janzen (1962[Russell, G. A. & Janzen, E. G. (1962). J. Am. Chem. Soc. 4, 4153-4154.]); Blake et al. (1966[Blake, J. A., Evans, M. J. B. & Russell, K. E. (1966). Can. J. Chem. 44, 119-124.]). For donor–acceptor inter­actions see: Mulliken (1952[Mulliken, R. S. (1952). J. Am. Chem. Soc. 74, 811-824.]); Radha et al. (1987[Radha, N., Dhoulethbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006-1008.]). For ππ stacking inter­actions, see: Vembu & Fronczek (2009[Vembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o111-o112.]). For the biological activity of pyrimidine and barbiturate derivatives, see: Jain et al. (2006[Jain, S., Chitre, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793-803.]); Tripathi (2009[Tripathi, K. D. (2009). In Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.]) and of related barbiturates, see: Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. UK: WSEAS Publications.]). For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Buvaneswari & Kalaivani (2011[Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o3452.]); Kalaivani & Mangaiyarkarasi (2013[Kalaivani, D. & Mangaiyarkarasi, G. (2013). Acta Cryst. E69, o3-o4.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N+·C10H4ClN4O7

  • Mr = 477.86

  • Triclinic, [P \overline 1]

  • a = 9.8040 (2) Å

  • b = 10.2870 (2) Å

  • c = 11.8260 (2) Å

  • α = 74.727 (1)°

  • β = 82.761 (1)°

  • γ = 71.817 (1)°

  • V = 1091.87 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.913, Tmax = 0.985

  • 18678 measured reflections

  • 3836 independent reflections

  • 3123 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.04

  • 3836 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O5i 0.83 (2) 2.06 (2) 2.892 (2) 175 (2)
N3—H3A⋯O7ii 0.83 (2) 1.96 (2) 2.794 (2) 180 (3)
N5—H5A⋯O6iii 0.87 (3) 1.82 (3) 2.677 (2) 168 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several types of interactions have been observed between electron deficient nitro aromatic compounds and electron rich species (Jackson et al., 1900; Mulliken, 1952; Russell et al., 1962; Blake et al., 1966). Partial transfer of electrons results in the formation of charge-transfer complexes (Mulliken, 1952; Russell et al., 1962). N,N-diethylaniline usually forms charge transfer complexes with electron deficient nitroaromatics which is revealed through the existence of π···π stacking in single crystal X-ray diffraction studies (Vembu et al.,2009). The title molecular salt is formed upon mixing 1,3-dichloro-4,6-dinitrobenzene (DCDNB), N,N-diethylaniline and barbituric acid in which no significant π···π stacking is observed between nitro aromatic ring and N,N-diethylaniline ring. Barbituric acid (pyrimidine-2,4,6(1H,3H,5H)-trione) and many other pyrimidine derivatives occupy a distinct and unique place in everyday life (Jain et al., 2006). Barbiturates are mainly used to stop convulsion and they also have hypnotic property which is applied for the treatment of psychotic patients, induction of state of sleep and prolonged sleep (Tripathi et al., 2009). The related barbiturates synthesised in our laboratory also possess such properties (Kalaivani & Malarvizhi 2009; Kalaivani & Buvaneswari 2010). Single crystal X-ray analysis of the molecular salts derived from (1-chloro-2,4-dinitrobenzene/2,4,6-trinitrobenzene), N,N-diethylaniline and barbituric acid have already been reported by our group (Buvaneswari & Kalaivani 2011; Kalaivani & Mangaiyarkarasi, 2013).

The molecular structure of the title compound is shown in Fig 1. In the crystal, N—H···O hyrogen bonds link cations and anions into chains (Fig 2) along [110] which incorporate R22(8) rings (Bernstein et al., 1995).

Related literature top

For different types of interactions between electron-deficient nitro aromatics and bases, see: Jackson & Gazzolo (1900); Mulliken (1952); Russell & Janzen (1962); Blake et al. (1966). For donor–acceptor interactions see: Mulliken (1952); Radha et al. (1987). For ππ stacking interactions, see: Vembu & Fronczek (2009). For the biological activity of pyrimidine and barbiturate derivatives, see: Jain et al. (2006); Tripathi (2009) and of related barbiturates, see: Kalaivani & Buvaneswari (2010). For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009); Buvaneswari & Kalaivani (2011); Kalaivani & Mangaiyarkarasi (2013). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

Analytical grade 1,3-dichloro-4,6-dinitrobenzene (DCDNB) and Barbituric acid (BBA) were used as supplied by Aldrich company. N,N-Diethylaniline was distilled under reduced pressure and the fraction boiling over at its boiling point was used. DCDNB (2.37g, 0.01mol) in 15ml of absolute ethanol was mixed with barbituric acid (1.28g, 0.01mol)in 30ml of absolute ethanol. N,N-diethylaniline (3g, 0.01mol) was added to the above mixture, heated to 313K, and shaken well for 5-6 hrs. The solution was kept at room temperature. After a period of two weeks dark reddish orange block-shaped crystals formed in the solution. The crystals were powdered well and washed with 2 to 5ml of ethanol and 50ml of dry ether and recrystallized from absolute alcohol (m.pt :494K ; yield :80 %). Good quality crystals (dark reddish-orange blocks) for single crystal X-ray studies were obtained by slow evaporation of ethanol solution of the title compound at room temperature.

Refinement top

The N-bound H atoms were located in difference Fourier maps and refind independently with isotropic displacement parameters. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = k Ueq(C), where k = 1.5 for methyl H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing the N—H···O hydrogen bonds as dotted lines.
N,N-Diethylanilinium 5-(5-chloro-2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C10H16N+·C10H4ClN4O7Z = 2
Mr = 477.86F(000) = 496
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8040 (2) ÅCell parameters from 7243 reflections
b = 10.2870 (2) Åθ = 2.2–27.2°
c = 11.8260 (2) ŵ = 0.23 mm1
α = 74.727 (1)°T = 293 K
β = 82.761 (1)°Block, red
γ = 71.817 (1)°0.30 × 0.30 × 0.20 mm
V = 1091.87 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube3123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.913, Tmax = 0.985k = 1212
18678 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.5116P]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H16N+·C10H4ClN4O7γ = 71.817 (1)°
Mr = 477.86V = 1091.87 (4) Å3
Triclinic, P1Z = 2
a = 9.8040 (2) ÅMo Kα radiation
b = 10.2870 (2) ŵ = 0.23 mm1
c = 11.8260 (2) ÅT = 293 K
α = 74.727 (1)°0.30 × 0.30 × 0.20 mm
β = 82.761 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3123 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.985Rint = 0.027
18678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
3836 reflectionsΔρmin = 0.25 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0071 (2)0.0230 (2)0.27529 (19)0.0475 (5)
C20.0626 (2)0.1317 (2)0.36552 (17)0.0474 (5)
C30.0487 (2)0.2634 (2)0.38156 (17)0.0477 (5)
H30.09410.33590.44250.057*
C40.0321 (2)0.2889 (2)0.30787 (17)0.0415 (4)
C50.10006 (18)0.18534 (19)0.21224 (16)0.0374 (4)
C60.0869 (2)0.0517 (2)0.20168 (18)0.0436 (5)
H60.13410.02180.14210.052*
C70.16905 (19)0.21325 (18)0.12259 (16)0.0377 (4)
C80.09802 (19)0.33217 (19)0.07694 (17)0.0402 (4)
C90.2870 (2)0.2669 (2)0.05867 (18)0.0449 (5)
N40.35173 (17)0.15462 (17)0.01261 (15)0.0415 (4)
C110.3494 (3)0.6406 (4)0.1188 (2)0.0874 (9)
H11A0.35320.54360.10720.131*
H11B0.25420.69370.09850.131*
H11C0.41670.64760.06990.131*
C120.3870 (3)0.6980 (3)0.2442 (2)0.0762 (8)
H12A0.37800.79730.25640.091*
H12B0.31960.68960.29330.091*
C130.5808 (3)0.6803 (3)0.4067 (2)0.0747 (7)
H13A0.66800.61410.42930.090*
H13B0.50590.68760.45640.090*
C140.6049 (6)0.8165 (4)0.4284 (4)0.1406 (17)
H14A0.51650.88500.41400.211*
H14B0.63840.84320.50850.211*
H14C0.67560.81170.37700.211*
C150.5662 (2)0.4699 (3)0.25663 (18)0.0520 (5)
C160.6740 (2)0.3853 (3)0.1841 (2)0.0589 (6)
H160.72970.42410.15230.071*
C170.6985 (3)0.2419 (3)0.1592 (2)0.0736 (7)
H170.77040.18250.10930.088*
C180.6163 (4)0.1865 (3)0.2085 (3)0.0808 (8)
H180.63320.08940.19220.097*
C190.5097 (4)0.2736 (4)0.2812 (3)0.0837 (9)
H190.45460.23520.31380.100*
C200.4836 (3)0.4154 (3)0.3062 (2)0.0694 (7)
H200.41130.47450.35590.083*
N10.0461 (2)0.43164 (19)0.33939 (16)0.0544 (5)
N20.1569 (2)0.1174 (3)0.44496 (18)0.0654 (6)
N30.16215 (17)0.35220 (18)0.01183 (15)0.0448 (4)
C100.29895 (19)0.11832 (18)0.07495 (16)0.0371 (4)
N50.5380 (2)0.6221 (2)0.28078 (16)0.0585 (5)
O10.16331 (19)0.44533 (19)0.33559 (18)0.0795 (6)
O20.05941 (19)0.52979 (17)0.37394 (16)0.0724 (5)
O30.2340 (2)0.2254 (3)0.50262 (19)0.1009 (7)
O40.1558 (3)0.0024 (3)0.4513 (2)0.1051 (8)
O50.37052 (14)0.00914 (13)0.10491 (13)0.0484 (4)
O60.33802 (18)0.28916 (18)0.13834 (16)0.0726 (5)
O70.01956 (14)0.41850 (15)0.10903 (13)0.0552 (4)
Cl10.00919 (8)0.14432 (7)0.24327 (7)0.0795 (2)
H4A0.429 (3)0.103 (2)0.0413 (19)0.050 (6)*
H3A0.120 (2)0.420 (2)0.0409 (19)0.047 (6)*
H5A0.590 (3)0.644 (3)0.238 (2)0.072 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0400 (10)0.0530 (12)0.0561 (12)0.0093 (9)0.0074 (9)0.0267 (10)
C20.0352 (10)0.0704 (14)0.0425 (11)0.0100 (9)0.0085 (8)0.0266 (10)
C30.0382 (10)0.0651 (13)0.0339 (10)0.0044 (9)0.0105 (8)0.0107 (9)
C40.0354 (9)0.0466 (11)0.0399 (10)0.0052 (8)0.0075 (8)0.0114 (8)
C50.0287 (9)0.0419 (10)0.0396 (10)0.0003 (7)0.0082 (7)0.0157 (8)
C60.0381 (10)0.0426 (11)0.0487 (11)0.0008 (8)0.0153 (8)0.0153 (9)
C70.0334 (9)0.0368 (9)0.0419 (10)0.0009 (7)0.0133 (8)0.0138 (8)
C80.0341 (9)0.0396 (10)0.0461 (11)0.0008 (8)0.0134 (8)0.0150 (8)
C90.0386 (10)0.0433 (11)0.0538 (12)0.0008 (8)0.0175 (9)0.0212 (9)
N40.0323 (8)0.0398 (9)0.0508 (10)0.0047 (7)0.0198 (7)0.0178 (7)
C110.0686 (17)0.111 (2)0.0614 (17)0.0041 (16)0.0067 (13)0.0204 (16)
C120.0681 (16)0.0864 (19)0.0613 (16)0.0003 (14)0.0242 (13)0.0135 (14)
C130.0782 (18)0.098 (2)0.0536 (14)0.0369 (16)0.0194 (13)0.0061 (13)
C140.221 (5)0.109 (3)0.104 (3)0.084 (3)0.027 (3)0.008 (2)
C150.0459 (11)0.0741 (15)0.0426 (11)0.0209 (11)0.0023 (9)0.0205 (10)
C160.0425 (11)0.0852 (17)0.0492 (13)0.0135 (11)0.0030 (10)0.0218 (12)
C170.0590 (15)0.0819 (19)0.0656 (16)0.0052 (14)0.0084 (12)0.0170 (14)
C180.090 (2)0.0781 (19)0.0766 (19)0.0345 (17)0.0293 (17)0.0260 (16)
C190.096 (2)0.104 (2)0.0735 (19)0.059 (2)0.0094 (17)0.0305 (17)
C200.0633 (15)0.101 (2)0.0587 (15)0.0389 (14)0.0094 (12)0.0222 (14)
N10.0529 (11)0.0553 (11)0.0509 (11)0.0123 (9)0.0147 (9)0.0040 (8)
N20.0491 (11)0.1064 (18)0.0543 (12)0.0243 (12)0.0102 (9)0.0363 (12)
N30.0387 (9)0.0413 (9)0.0558 (10)0.0053 (7)0.0188 (8)0.0267 (8)
C100.0336 (9)0.0348 (9)0.0431 (10)0.0032 (8)0.0125 (8)0.0127 (8)
N50.0554 (11)0.0807 (14)0.0446 (10)0.0206 (10)0.0213 (9)0.0142 (10)
O10.0631 (11)0.0739 (12)0.1013 (14)0.0317 (9)0.0211 (10)0.0015 (10)
O20.0740 (11)0.0520 (9)0.0756 (12)0.0005 (8)0.0290 (9)0.0018 (8)
O30.0875 (14)0.1337 (19)0.0848 (14)0.0213 (13)0.0548 (12)0.0209 (13)
O40.1107 (17)0.1282 (19)0.1117 (18)0.0526 (15)0.0386 (14)0.0513 (15)
O50.0393 (7)0.0416 (7)0.0634 (9)0.0081 (6)0.0221 (6)0.0258 (7)
O60.0622 (10)0.0751 (11)0.0873 (12)0.0129 (8)0.0443 (9)0.0515 (10)
O70.0417 (8)0.0527 (8)0.0684 (10)0.0147 (6)0.0284 (7)0.0320 (7)
Cl10.0822 (5)0.0605 (4)0.1107 (6)0.0254 (3)0.0314 (4)0.0274 (4)
Geometric parameters (Å, º) top
C1—C61.381 (3)C12—H12B0.9700
C1—C21.391 (3)C13—C141.444 (4)
C1—Cl11.716 (2)C13—N51.511 (3)
C2—C31.365 (3)C13—H13A0.9700
C2—N21.462 (3)C13—H13B0.9700
C3—C41.371 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.404 (3)C14—H14C0.9600
C4—N11.463 (3)C15—C161.368 (3)
C5—C61.392 (3)C15—C201.376 (3)
C5—C71.458 (2)C15—N51.457 (3)
C6—H60.9300C16—C171.375 (4)
C7—C81.412 (2)C16—H160.9300
C7—C101.417 (2)C17—C181.376 (4)
C8—O71.247 (2)C17—H170.9300
C8—N31.379 (2)C18—C191.367 (4)
C9—O61.222 (2)C18—H180.9300
C9—N31.348 (2)C19—C201.356 (4)
C9—N41.350 (2)C19—H190.9300
N4—C101.392 (2)C20—H200.9300
N4—H4A0.83 (2)N1—O11.208 (2)
C11—C121.490 (4)N1—O21.222 (2)
C11—H11A0.9600N2—O41.201 (3)
C11—H11B0.9600N2—O31.215 (3)
C11—H11C0.9600N3—H3A0.83 (2)
C12—N51.511 (3)C10—O51.239 (2)
C12—H12A0.9700N5—H5A0.87 (3)
C6—C1—C2118.98 (19)C14—C13—H13B108.7
C6—C1—Cl1117.21 (16)N5—C13—H13B108.7
C2—C1—Cl1123.67 (16)H13A—C13—H13B107.6
C3—C2—C1119.82 (17)C13—C14—H14A109.5
C3—C2—N2115.7 (2)C13—C14—H14B109.5
C1—C2—N2124.4 (2)H14A—C14—H14B109.5
C2—C3—C4120.06 (18)C13—C14—H14C109.5
C2—C3—H3120.0H14A—C14—H14C109.5
C4—C3—H3120.0H14B—C14—H14C109.5
C3—C4—C5122.90 (19)C16—C15—C20121.9 (2)
C3—C4—N1114.53 (17)C16—C15—N5118.7 (2)
C5—C4—N1122.53 (17)C20—C15—N5119.4 (2)
C6—C5—C4114.94 (17)C15—C16—C17118.7 (2)
C6—C5—C7120.57 (16)C15—C16—H16120.7
C4—C5—C7124.27 (17)C17—C16—H16120.7
C1—C6—C5123.20 (18)C16—C17—C18119.8 (3)
C1—C6—H6118.4C16—C17—H17120.1
C5—C6—H6118.4C18—C17—H17120.1
C8—C7—C10119.95 (16)C19—C18—C17120.2 (3)
C8—C7—C5118.54 (15)C19—C18—H18119.9
C10—C7—C5121.33 (15)C17—C18—H18119.9
O7—C8—N3117.64 (16)C20—C19—C18120.8 (3)
O7—C8—C7125.00 (16)C20—C19—H19119.6
N3—C8—C7117.34 (15)C18—C19—H19119.6
O6—C9—N3122.27 (17)C19—C20—C15118.6 (3)
O6—C9—N4121.96 (17)C19—C20—H20120.7
N3—C9—N4115.77 (17)C15—C20—H20120.7
C9—N4—C10125.86 (15)O1—N1—O2123.6 (2)
C9—N4—H4A115.2 (15)O1—N1—C4118.06 (18)
C10—N4—H4A118.9 (15)O2—N1—C4118.25 (18)
C12—C11—H11A109.5O4—N2—O3122.8 (2)
C12—C11—H11B109.5O4—N2—C2120.0 (2)
H11A—C11—H11B109.5O3—N2—C2117.2 (2)
C12—C11—H11C109.5C9—N3—C8125.13 (16)
H11A—C11—H11C109.5C9—N3—H3A116.8 (15)
H11B—C11—H11C109.5C8—N3—H3A118.1 (15)
C11—C12—N5112.2 (2)O5—C10—N4117.47 (15)
C11—C12—H12A109.2O5—C10—C7126.66 (16)
N5—C12—H12A109.2N4—C10—C7115.85 (15)
C11—C12—H12B109.2C15—N5—C13110.66 (19)
N5—C12—H12B109.2C15—N5—C12113.4 (2)
H12A—C12—H12B107.9C13—N5—C12113.49 (19)
C14—C13—N5114.3 (3)C15—N5—H5A110.8 (17)
C14—C13—H13A108.7C13—N5—H5A105.5 (17)
N5—C13—H13A108.7C12—N5—H5A102.4 (17)
C6—C1—C2—C31.4 (3)C17—C18—C19—C200.2 (4)
Cl1—C1—C2—C3177.04 (16)C18—C19—C20—C150.2 (4)
C6—C1—C2—N2176.22 (18)C16—C15—C20—C190.6 (4)
Cl1—C1—C2—N20.6 (3)N5—C15—C20—C19178.9 (2)
C1—C2—C3—C40.9 (3)C3—C4—N1—O1136.1 (2)
N2—C2—C3—C4176.96 (17)C5—C4—N1—O141.9 (3)
C2—C3—C4—C51.9 (3)C3—C4—N1—O240.2 (3)
C2—C3—C4—N1176.06 (18)C5—C4—N1—O2141.9 (2)
C3—C4—C5—C63.8 (3)C3—C2—N2—O4166.9 (2)
N1—C4—C5—C6173.95 (17)C1—C2—N2—O415.4 (3)
C3—C4—C5—C7170.75 (18)C3—C2—N2—O313.0 (3)
N1—C4—C5—C711.5 (3)C1—C2—N2—O3164.7 (2)
C2—C1—C6—C50.8 (3)O6—C9—N3—C8179.2 (2)
Cl1—C1—C6—C5175.12 (16)N4—C9—N3—C80.4 (3)
C4—C5—C6—C13.2 (3)O7—C8—N3—C9178.2 (2)
C7—C5—C6—C1171.53 (18)C7—C8—N3—C90.2 (3)
C6—C5—C7—C8130.8 (2)C9—N4—C10—O5178.0 (2)
C4—C5—C7—C843.4 (3)C9—N4—C10—C73.3 (3)
C6—C5—C7—C1044.3 (3)C8—C7—C10—O5178.5 (2)
C4—C5—C7—C10141.4 (2)C5—C7—C10—O53.4 (3)
C10—C7—C8—O7176.7 (2)C8—C7—C10—N43.0 (3)
C5—C7—C8—O71.5 (3)C5—C7—C10—N4178.07 (17)
C10—C7—C8—N31.6 (3)C16—C15—N5—C13110.6 (2)
C5—C7—C8—N3176.84 (18)C20—C15—N5—C1369.9 (3)
O6—C9—N4—C10177.5 (2)C16—C15—N5—C12120.5 (2)
N3—C9—N4—C102.0 (3)C20—C15—N5—C1259.0 (3)
C20—C15—C16—C170.9 (3)C14—C13—N5—C15159.4 (3)
N5—C15—C16—C17178.5 (2)C14—C13—N5—C1271.8 (4)
C15—C16—C17—C180.9 (4)C11—C12—N5—C1554.0 (3)
C16—C17—C18—C190.5 (4)C11—C12—N5—C13178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O5i0.83 (2)2.06 (2)2.892 (2)175 (2)
N3—H3A···O7ii0.83 (2)1.96 (2)2.794 (2)180 (3)
N5—H5A···O6iii0.87 (3)1.82 (3)2.677 (2)168 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H16N+·C10H4ClN4O7
Mr477.86
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8040 (2), 10.2870 (2), 11.8260 (2)
α, β, γ (°)74.727 (1), 82.761 (1), 71.817 (1)
V3)1091.87 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.913, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18678, 3836, 3123
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.04
No. of reflections3836
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O5i0.83 (2)2.06 (2)2.892 (2)175 (2)
N3—H3A···O7ii0.83 (2)1.96 (2)2.794 (2)180 (3)
N5—H5A···O6iii0.87 (3)1.82 (3)2.677 (2)168 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlake, J. A., Evans, M. J. B. & Russell, K. E. (1966). Can. J. Chem. 44, 119–124.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o3452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJackson, C. J. & Gazzolo, F. H. (1900). Am. Chem. J. 23, 376–396.  CAS Google Scholar
First citationJain, S., Chitre, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793–803.  CAS Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. UK: WSEAS Publications.  Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D. & Mangaiyarkarasi, G. (2013). Acta Cryst. E69, o3–o4.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMulliken, R. S. (1952). J. Am. Chem. Soc. 74, 811–824.  CrossRef CAS Web of Science Google Scholar
First citationRadha, N., Dhoulethbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006–1008.  Google Scholar
First citationRussell, G. A. & Janzen, E. G. (1962). J. Am. Chem. Soc. 4, 4153–4154.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, K. D. (2009). In Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.  Google Scholar
First citationVembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o111–o112.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o398-o399
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds