[Journal logo]

Volume 69 
Part 3 
Pages m150-m151  
March 2013  

Received 28 January 2013
Accepted 4 February 2013
Online 16 February 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.005 Å
R = 0.052
wR = 0.124
Data-to-parameter ratio = 16.5
Details
Open access

catena-Poly[[[aquacopper(II)]-bis[[mu]-N,N'-bis(pyridin-4-yl)isophthalamide]-[aquacopper(II)]-di-[mu]-sulfato] dimethylformamide disolvate]

aHenan Center for Disease Control and Prevention, Zhengzhou 450016, People's Republic of China, and bCollege of Chemical and Food Engineering, ZhongZhou University, Zhengzhou 450044, People's Republic of China
Correspondence e-mail: erpengzhang@163.com

In the title coordination polymer, {[Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO}n, the CuII ion is coordinated by two N atoms of two briding N,N'-bis(pyridin-4-yl)isophthalamide ligands, two O atoms of two bridging SO42- anions and a water molecule, giving a distorted CuN2O3 square-pyramidal geometry. The whole repeating molecular unit is generated by inversion symmetry. This leads to the formation of a looped-chain one-dimensional coordination polymer propagating along [110]. The dimethylformamide (DMF) molecules are linked to the chains via O-H...O hydrogen bonds. The chains are linked via N-H...O hydrogen bonds, forming two-dimensional networks parallel to (001). There are also a number of C-H...O interactions present and a parallel slipped [pi]-[pi] interaction. The latter involves inversion-related pyridine rings with a centroid-centroid distance of 3.594 (2) Å [normal distance = 3.3338 (13) and slippage = 1.341 Å]. These interactions lead to the formation of a three-dimensional structure.

Related literature

For background to metal complexes with a N,N'-bis-(4-pyridyl)isophthalamide ligand, see: Adarsh et al. (2009[Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2009). CrystEngComm, 11, 792-802.]); Gong et al. (2010[Gong, Y., Zhou, Y. C., Li, J. H., Cao, R. & Qin, J. B. (2010). Dalton Trans. 39, 9923-9928.], 2011[Gong, Y., Zhou, Y. C., Liu, T. F., Lu, J., Proserpioc, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982-5984.]); Kim et al. (2011[Kim, K., Park, S., Park, K. M. & Lee, S. S. (2011). Cryst. Growth Des. 11, 4059-4067.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C18H14N4O2)(H2O)]·C3H7NO

  • Mr = 569.06

  • Triclinic, [P \overline 1]

  • a = 10.389 (2) Å

  • b = 11.092 (1) Å

  • c = 12.105 (2) Å

  • [alpha] = 63.47 (3)°

  • [beta] = 79.75 (2)°

  • [gamma] = 71.08 (3)°

  • V = 1179.8 (4) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.07 mm-1

  • T = 293 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.753, Tmax = 0.814

  • 14785 measured reflections

  • 5581 independent reflections

  • 4622 reflections with I > 2[sigma](I)

  • Rint = 0.039

Refinement
  • R[F2 > 2[sigma](F2)] = 0.052

  • wR(F2) = 0.124

  • S = 1.07

  • 5581 reflections

  • 339 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.44 e Å-3

  • [Delta][rho]min = -0.48 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N3-H3A...O2i 0.86 (3) 2.03 (3) 2.867 (3) 164 (3)
N4-H4A...O3i 0.87 (3) 2.25 (3) 3.103 (4) 168 (3)
O5-H5A...O8ii 0.82 (3) 1.81 (3) 2.626 (4) 179 (4)
O5-H5B...O2 0.81 (3) 1.90 (3) 2.684 (3) 164 (4)
C4-H4...O8 0.93 2.45 3.325 (4) 157
C18-H18...O6iii 0.93 2.55 3.277 (4) 136
C19-H19...O4iv 0.93 2.47 3.286 (4) 146
C20-H20C...O3v 0.96 2.58 3.226 (6) 125
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y-1, z+1; (v) -x, -y+3, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2555 ).


Acknowledgements

The authors are grateful to the Henan Center for Disease Control and Prevention for financial support and thank Professor Hong-Wei Hou of Zhengzhou University for his help.

References

Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2009). CrystEngComm, 11, 792-802.  [ISI] [CSD] [CrossRef]
Gong, Y., Zhou, Y. C., Li, J. H., Cao, R. & Qin, J. B. (2010). Dalton Trans. 39, 9923-9928.  [CSD] [CrossRef] [ChemPort] [PubMed]
Gong, Y., Zhou, Y. C., Liu, T. F., Lu, J., Proserpioc, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982-5984.  [CSD] [CrossRef] [ChemPort]
Kim, K., Park, S., Park, K. M. & Lee, S. S. (2011). Cryst. Growth Des. 11, 4059-4067.  [CSD] [CrossRef] [ChemPort]
Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, m150-m151   [ doi:10.1107/S1600536813003413 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.