organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)acetamide: a new polymorph

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 24 February 2013; accepted 25 February 2013; online 28 February 2013)

A new polymorph of the title compound, C8H8BrNO, has been determined at 173 K in the space group P21/c. The previous room-temperature structure was reported to crystallize in the ortho­rhom­bic space group Pna21 [Andreetti et al. (1968[Andreetti, G. D., Cavalca, L., Domiano, P. & Musatti, A. (1968). Acta Cryst. B24, 1195-1198.]). Acta Cryst. B24, 1195–1198]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds forming chains along [010]. Weak C—H⋯π inter­actions are also present.

Related literature

For 2-aryl­acetamides, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]) and for amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For the structure of the ortho­rhom­bic polymorph, see: Andreetti et al. (1968[Andreetti, G. D., Cavalca, L., Domiano, P. & Musatti, A. (1968). Acta Cryst. B24, 1195-1198.]). For related structures, see: Praveen et al. (2011a[Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2602-o2603.],b[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2604.],c[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o1826.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrNO

  • Mr = 214.06

  • Monoclinic, P 21 /c

  • a = 6.7250 (7) Å

  • b = 9.3876 (11) Å

  • c = 14.4434 (14) Å

  • β = 117.750 (4)°

  • V = 806.96 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.03 mm−1

  • T = 173 K

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.296, Tmax = 0.465

  • 10902 measured reflections

  • 2689 independent reflections

  • 2099 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.073

  • S = 1.04

  • 2689 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 2.00 2.885 (2) 174
C1—H1BCg1ii 0.98 2.84 3.761 (3) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzyl penicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). The room temperature crystal structure of the title compound was reported without hydrogen atom coordinates in the orthorhombic space group Pna21 (Andreetti et al., 1968). We report herein on the crystal structure of the monoclinic polymorph that crystallized in space group P21/c.

The molecular structure of the title compound is illustrated in Fig. 1. Bond lengths are in normal ranges (Allen et al., 1987) but show slight changes from those reported for some similar acetamide derivatives viz., N-(4-chloro-1,3-benzothiazol-2-yl)-2-(3-methylphenyl)acetamide monohydrate (Praveen et al., 2011a), N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide (Praveen et al., 2011b) and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011c). The differences observed are primarily in the acetamide and bromophenyl regions [C1–C2 1.501 (3) Å versus 1.53 (4) Å; N1–C2 1.347 (2) Å versus 1.30 (3) Å; N1–C3 1.401 (2) Å versus 1.44 (3) Å and C6–Br 1.8907 (19) versus 1.91 (1) Å].

In the crystal, molecules are linked by N—H···O hydrogen bonds forming chains along [010] [Table 1 and Fig. 2]. Weak C—H···π interactions are also present (Table 1) and contribute to the crystal packing stability.

Related literature top

For 2-arylacetamides, see: Mijin & Marinkovic (2006); Mijin et al. (2008) and for amides, see: Wu et al. (2008, 2010). For the structure of the orthorhombic polymorph, see: Andreetti et al. (1968). For related structures, see: Praveen et al. (2011a,b,c). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Bromo aniline (0.172 g, 1 mmol) was dissolved in acetic acid (20 ml) and refluxed for 4 h. The solution was then cooled and poured into 100 ml of ice-cold water with stirring. The precipitate obtained was filtered, washed with water and dried. Block-like yellow crystals were grown from a solution in ethyl acetate by slow evaporation of the solvent (M.p.: 430 K).

Refinement top

The NH H atom was located in a difference Fourier map and refined as a riding atom: N-H = 0.89 Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95 Å (CH) and 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) for CH H atoms and = 1.5Ueq(C) for CH3 H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed along the c axis. Dashed lines indicate N—H···O hydrogen bonds linking the molecules into chains along [010]. C-bound H atoms have been omitted for clarity.
N-(4-Bromophenyl)acetamide top
Crystal data top
C8H8BrNOF(000) = 424
Mr = 214.06Dx = 1.762 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3269 reflections
a = 6.7250 (7) Åθ = 3.4–32.3°
b = 9.3876 (11) ŵ = 5.03 mm1
c = 14.4434 (14) ÅT = 173 K
β = 117.750 (4)°Block, yellow
V = 806.96 (15) Å30.32 × 0.22 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
2689 independent reflections
Radiation source: Enhance (Mo) X-ray Source2099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1500 pixels mm-1θmax = 32.3°, θmin = 3.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction 2010)
k = 1313
Tmin = 0.296, Tmax = 0.465l = 2019
10902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.1779P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C8H8BrNOV = 806.96 (15) Å3
Mr = 214.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7250 (7) ŵ = 5.03 mm1
b = 9.3876 (11) ÅT = 173 K
c = 14.4434 (14) Å0.32 × 0.22 × 0.18 mm
β = 117.750 (4)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
2689 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction 2010)
2099 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.465Rint = 0.035
10902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.04Δρmax = 0.54 e Å3
2689 reflectionsΔρmin = 0.44 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12616 (4)0.70900 (2)0.493749 (17)0.03329 (8)
O10.4333 (2)0.63844 (14)0.19611 (11)0.0286 (3)
N10.3872 (3)0.85329 (15)0.25584 (12)0.0212 (3)
H10.43580.94320.26580.025*
C10.5678 (4)0.8449 (2)0.14665 (17)0.0283 (4)
H1A0.51620.80410.07670.042*
H1B0.73120.83440.18690.042*
H1C0.52810.94620.14040.042*
C20.4570 (3)0.76819 (19)0.20162 (15)0.0213 (4)
C30.2696 (3)0.81333 (18)0.31030 (14)0.0199 (3)
C40.2647 (3)0.91062 (19)0.38173 (15)0.0240 (4)
H40.34280.99850.39310.029*
C50.1473 (3)0.8806 (2)0.43633 (16)0.0265 (4)
H50.14350.94750.48490.032*
C60.0351 (3)0.7520 (2)0.41948 (15)0.0233 (4)
C70.0369 (3)0.6541 (2)0.34821 (15)0.0247 (4)
H70.04070.56620.33740.030*
C80.1522 (3)0.68544 (19)0.29313 (15)0.0235 (4)
H80.15180.61950.24310.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03360 (13)0.03978 (14)0.03455 (13)0.00199 (9)0.02264 (10)0.00392 (9)
O10.0383 (8)0.0163 (6)0.0388 (8)0.0038 (6)0.0242 (7)0.0003 (5)
N10.0257 (8)0.0132 (7)0.0290 (8)0.0018 (6)0.0163 (7)0.0016 (6)
C10.0328 (11)0.0252 (9)0.0350 (11)0.0002 (8)0.0226 (9)0.0001 (8)
C20.0214 (9)0.0189 (9)0.0260 (9)0.0025 (7)0.0129 (7)0.0009 (7)
C30.0207 (9)0.0161 (8)0.0237 (9)0.0028 (6)0.0109 (7)0.0020 (6)
C40.0296 (10)0.0159 (8)0.0288 (10)0.0009 (7)0.0157 (8)0.0008 (7)
C50.0331 (11)0.0219 (9)0.0285 (10)0.0009 (8)0.0176 (9)0.0028 (7)
C60.0213 (9)0.0263 (9)0.0239 (9)0.0019 (7)0.0119 (8)0.0050 (7)
C70.0239 (9)0.0204 (8)0.0301 (10)0.0038 (7)0.0129 (8)0.0001 (7)
C80.0257 (9)0.0182 (8)0.0281 (10)0.0014 (7)0.0138 (8)0.0027 (7)
Geometric parameters (Å, º) top
Br1—C61.8906 (19)C3—C81.394 (2)
O1—C21.226 (2)C4—C51.380 (3)
N1—C21.347 (2)C4—H40.9500
N1—C31.401 (2)C5—C61.384 (3)
N1—H10.8922C5—H50.9500
C1—C21.501 (3)C6—C71.384 (3)
C1—H1A0.9800C7—C81.377 (3)
C1—H1B0.9800C7—H70.9500
C1—H1C0.9800C8—H80.9500
C3—C41.390 (2)
C2—N1—C3127.45 (15)C5—C4—C3120.52 (17)
C2—N1—H1117.0C5—C4—H4119.7
C3—N1—H1115.1C3—C4—H4119.7
C2—C1—H1A109.5C4—C5—C6119.17 (17)
C2—C1—H1B109.5C4—C5—H5120.4
H1A—C1—H1B109.5C6—C5—H5120.4
C2—C1—H1C109.5C5—C6—C7121.18 (18)
H1A—C1—H1C109.5C5—C6—Br1119.76 (15)
H1B—C1—H1C109.5C7—C6—Br1119.06 (15)
O1—C2—N1123.83 (17)C8—C7—C6119.33 (18)
O1—C2—C1121.58 (17)C8—C7—H7120.3
N1—C2—C1114.59 (16)C6—C7—H7120.3
C4—C3—C8119.39 (18)C7—C8—C3120.39 (18)
C4—C3—N1117.09 (16)C7—C8—H8119.8
C8—C3—N1123.46 (17)C3—C8—H8119.8
C3—N1—C2—O13.1 (3)C4—C5—C6—C70.7 (3)
C3—N1—C2—C1176.68 (18)C4—C5—C6—Br1179.88 (15)
C2—N1—C3—C4164.06 (18)C5—C6—C7—C80.0 (3)
C2—N1—C3—C818.6 (3)Br1—C6—C7—C8179.37 (15)
C8—C3—C4—C50.8 (3)C6—C7—C8—C31.2 (3)
N1—C3—C4—C5178.23 (17)C4—C3—C8—C71.6 (3)
C3—C4—C5—C60.3 (3)N1—C3—C8—C7178.81 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.892.002.885 (2)174
C1—H1B···Cg1ii0.982.843.761 (3)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H8BrNO
Mr214.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.7250 (7), 9.3876 (11), 14.4434 (14)
β (°) 117.750 (4)
V3)806.96 (15)
Z4
Radiation typeMo Kα
µ (mm1)5.03
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction 2010)
Tmin, Tmax0.296, 0.465
No. of measured, independent and
observed [I > 2σ(I)] reflections
10902, 2689, 2099
Rint0.035
(sin θ/λ)max1)0.753
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.04
No. of reflections2689
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.44

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.892.002.885 (2)174
C1—H1B···Cg1ii0.982.843.761 (3)157
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase-1 programme and a BSR one-time grant. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAndreetti, G. D., Cavalca, L., Domiano, P. & Musatti, A. (1968). Acta Cryst. B24, 1195–1198.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2602–o2603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds