organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o356-o357

2-[N-(2,4-Dimeth­­oxy­phen­yl)acetamido]-1,3-thia­zol-4-yl acetate

aDepartment of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine, bDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and cFaculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. A. Jurasza 2, 85-089 Bydgoszcz, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 1 February 2013; accepted 4 February 2013; online 9 February 2013)

The title compound, C15H16N2O5S, is a product of the reaction of 2-(2,4-dimeth­oxy­phenyl­amino)-1,3-thia­zol-4(5H)-one with acetic anhydride. The presence of the acetyl and acet­oxy groups in the mol­ecule indicates that the starting thia­zole exists as a tautomer in the reaction mixture with exocyclic amino and enol moieties. The acetyl group is tilted slightly from the heterocyclic ring plane [dihedral angle = 4.46 (11)°], while the acet­oxy group is almost perpendicular to this ring [dihedral angle = 88.14 (12)°]. An intra­molecular acet­yl–meth­oxy C—H⋯O inter­action is noted. In the crystal, mol­ecules are connected into a three-dimensional architecture by C—H⋯O inter­actions.

Related literature

For the biological activity of 2-aryl­amino­thia­zol-4-one derivatives, see: Chen et al. (2007[Chen, S., Chen, L., Le, N. T., Zhao, C., Sidduri, A., Lou, J. P., Michoud, C., Portland, L., Jackson, N. & Liu, J. J. (2007). Bioorg. Med. Chem. Lett. 17, 2134-2138.]); Eriksson et al. (2007[Eriksson, B., Kurz, G., Hedberg, C. & Westman, J. (2007). Patent No. WO2007010273.]); Lesyk & Zimenkovsky (2004[Lesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547-1577.]); Lesyk et al. (2011[Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel'na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell. 27, 107-117.]); Ottana et al. (2005[Ottana, R., Carotti, S., Maccari, R., Landini, I., Chiricosta, G., Caciagli, B., Vigorita, M. G. & Mini, E. (2005). Bioorg. Med. Chem. Lett. 15, 3930-3933.]); Subtelna et al. (2010[Subtelna, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5089-5101.]); Vassilev et al. (2006[Vassilev, L. T., Tovar, C., Chen, S., Knezevic, D., Zhao, X., Sun, H., Heimbrook, D. C. & Chen, L. (2006). Proc. Natl Acad. Sci. USA, 103, 10660-10665.]). For prototropic tautomerism studies, see: Subtelna et al. (2010[Subtelna, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5089-5101.]); Lesyk et al. (2003[Lesyk, R., Zimenkovsky, B., Subtelna, I., Nektegayev, I. & Kazmirchuk, G. (2003). Acta Pol. Pharm. 60, 457-466.]); Vana et al. (2009[Vana, J., Hanusek, J., Ruzicka, A. & Sedlak, M. (2009). J. Heterocycl. Chem. 46, 635-639.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O5S

  • Mr = 336.36

  • Triclinic, [P \overline 1]

  • a = 9.1486 (11) Å

  • b = 9.3592 (13) Å

  • c = 10.2823 (8) Å

  • α = 69.212 (10)°

  • β = 82.910 (8)°

  • γ = 77.220 (11)°

  • V = 801.73 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 130 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent Xcalibur Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.919, Tmax = 1.000

  • 10576 measured reflections

  • 3822 independent reflections

  • 3281 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.06

  • 3822 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O16 0.96 2.57 3.1838 (19) 122
C5—H5⋯O18i 0.93 2.47 3.2465 (18) 141
C15—H15⋯O8ii 0.93 2.52 3.3117 (18) 143
C17—H17C⋯O8iii 0.96 2.35 3.2945 (19) 170
Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Arylaminothiazol-4-one derivatives are of great importance in modern medicinal chemistry of anticancer agents (Lesyk & Zimenkovsky, 2004; Lesyk et al., 2011). In particular, these heterocycles demonstrated inhibition of the HT29 cell line (colon cancer), characterized by a high COX-2 expression (Ottana et al., 2005), as well as CDK1/cyclin B inhibition (Chen et al., 2007). These effects were achieved by block of cell cycle progression at the G2/M phase border in reversible manner and induction of apoptosis (Vassilev et al., 2006). Antagonizing stimulatory effects of free fatty acids at cell proliferation (inhibitory effect on tumor survival) in human breast cancer cell line (MDA-MB-231) was reported as well for the benzylidene-2-arylaminothiazol-4-ones (Eriksson et al., 2007). Series of novel 5-arylidene-2-arylaminothiazol-4(5H)-ones were evaluated for the anticancer potential, in vitro, against the standard US National Cancer Institute's panel of 60 cancer cell lines. The majority of compounds showed significant cytotoxicity at micromolar and submicromolar concentrations; mean log(GI50) range -5.77 to -4.35. Some of the most potent compounds possessed selectively high effects on all leukemia cell lines at the submicromolar level (Subtelna et al., 2010).

Prototropic tautomerism of 2-aminothiazol-4-ones presents an interesting target for studies of both molecular structures and spectroscopic properties (Subtelna et al., 2010; Lesyk et al., 2003; Vana et al., 2009). Motivated by previous research of 2-arylaminothiazol-4-one derivatives, the aim of the present work was to synthesize the title compound (I) as a starting substance for further design of new anticancer agents.

The studies on the structure of compound (I), a product of the reaction of 2-(2,4-dimethoxyphenylamino)-1,3-thiazol-4-one with acetic anhydride, showed the presence of acetoxy and acetyl groups attached respectively at C4 and N6 positions of the compound (Fig. 1). This observation indicates that the starting material exists in the reaction mixture as a tautomer with an exocyclic amino nitrogen atom and additionally an enol moiety (H—)C5C4—OH in the heterocyclic ring. The acetyl and acetoxy groups are oriented differently relative to the planar thiazole ring. The acetyl group at N6 is tilted only slightly [dihedral angle: 4.46 (11)°] whereas the acetoxy group at C4 is almost perpendicular to this ring [dihedral angle: 88.14 (12)°] (Fig. 1). Worthy of mention is the fact that the C7 O8 and C21O22 carbonyl groups are synperiplanar in relation to the C2—N6 and C4—O20, respectively. The torsion angles C2—N6—C7—O8 and C4—O20—C21—O22 are -1.16 (19) and 12.0 (2)°, respectively.

The methoxy groups on C11 and C14 of the phenyl ring are tilted to a small but statistically significant extent. The torsional angles C12—C11—O16—C17 and C12—C13—O18—C19 have the same value of 11.2 (2)°.

The phenyl ring of the 2,4-dimethoxyphenylamino substituent forms a dihedral angle of 73.17 (5)° with the planar thiazole ring. Such an orientation is supported by nonclassical C9—H9A···O16 intramolecular and O15—H15···O8ii intermolecular hydrogen bonding (Table 1).

In the crystal lattice, the molecules of compound (I) are connected by three-centre hydrogen bonds C17i—H17Ci···O8···H15ii—C15ii into ribbons parallel to the a axis. According to the graph method for categorizing hydrogen bonds, this pattern can be classified as ring motifs R22(16) and R22(12) (Fig. 2). The neighbouring ribbons are linked further through the C5—H5···O18iii contacts into layers growing parallel to the (011) plane (Fig. 3).

Related literature top

For the biological activity of 2-arylaminothiazol-4-one derivatives, see: Chen et al. (2007); Eriksson et al. (2007); Lesyk & Zimenkovsky (2004); Lesyk et al. (2011); Ottana et al. (2005); Subtelna et al. (2010); Vassilev et al. (2006). For prototropic tautomerism studies, see: Subtelna et al. (2010); Lesyk et al. (2003); Vana et al. (2009).

Experimental top

2-(2,4-Dimethoxyphenyl)thiazol-4-one (1 g) in the medium of acetic anhydride was refluxed for 2 h. The obtained solution was evaporated in vacuum and the residue was recrystallized twice from mixtures benzene–hexane (1:1) and CCl4 – hexane (1:1). Crystals were obtained from its methanol solution by evaporation at room temperature.

Refinement top

All H atoms were positioned into the idealized positions and were refined in the riding model approximation: Cmethyl—H = 0.96 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups which were allowed to rotate.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) together with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bonding (dotted lines) in (I), viewed approximately down the c axis. Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 1 - y, -z. The ring graph symbols are shown. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. The hydrogen bonding (dotted lines) in (I), viewed approximately down the a axis. Symmetry code: (iii) x, -1 + y, 1 + z. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-[N-(2,4-Dimethoxyphenyl)acetamido]-1,3-thiazol-4-yl acetate top
Crystal data top
C15H16N2O5SZ = 2
Mr = 336.36F(000) = 352
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Melting point = 391–393 K
a = 9.1486 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3592 (13) ÅCell parameters from 4534 reflections
c = 10.2823 (8) Åθ = 2.1–29.0°
α = 69.212 (10)°µ = 0.23 mm1
β = 82.910 (8)°T = 130 K
γ = 77.220 (11)°Plate, light-orange
V = 801.73 (16) Å30.30 × 0.30 × 0.10 mm
Data collection top
Agilent Xcalibur Atlas
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube3281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.3088 pixels mm-1θmax = 29.1°, θmin = 2.1°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1211
Tmin = 0.919, Tmax = 1.000l = 1313
10576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2365P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H16N2O5Sγ = 77.220 (11)°
Mr = 336.36V = 801.73 (16) Å3
Triclinic, P1Z = 2
a = 9.1486 (11) ÅMo Kα radiation
b = 9.3592 (13) ŵ = 0.23 mm1
c = 10.2823 (8) ÅT = 130 K
α = 69.212 (10)°0.30 × 0.30 × 0.10 mm
β = 82.910 (8)°
Data collection top
Agilent Xcalibur Atlas
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3281 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.023
10576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
3822 reflectionsΔρmin = 0.31 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32458 (4)0.43206 (4)0.29160 (4)0.02952 (11)
C20.31474 (13)0.61823 (14)0.16952 (13)0.0216 (3)
N30.32110 (12)0.72722 (12)0.21915 (11)0.0230 (2)
C40.33664 (14)0.66136 (16)0.35971 (14)0.0263 (3)
C50.34049 (15)0.50714 (17)0.41887 (15)0.0310 (3)
H50.35020.45030.51320.037*
N60.29963 (12)0.65332 (12)0.02702 (11)0.0216 (2)
C70.30067 (14)0.53574 (15)0.02554 (15)0.0260 (3)
O80.31721 (12)0.40055 (11)0.05240 (12)0.0346 (2)
C90.28173 (17)0.58190 (17)0.17857 (16)0.0319 (3)
H9A0.17970.63250.19900.048*
H9B0.30570.49080.20540.048*
H9C0.34770.65210.22930.048*
C100.27699 (14)0.81557 (14)0.05890 (12)0.0194 (2)
C110.13373 (14)0.89309 (14)0.10249 (12)0.0190 (2)
C120.10876 (14)1.05180 (14)0.18041 (12)0.0195 (2)
H120.01371.10440.21080.023*
C130.22900 (14)1.13041 (14)0.21197 (12)0.0197 (2)
C140.37236 (14)1.05301 (15)0.17013 (13)0.0215 (3)
H140.45171.10630.19330.026*
C150.39576 (14)0.89529 (14)0.09341 (13)0.0212 (3)
H150.49140.84240.06480.025*
O160.02463 (10)0.80501 (10)0.06499 (9)0.0232 (2)
C170.11652 (15)0.87342 (16)0.12963 (15)0.0286 (3)
H17A0.10020.90410.22900.043*
H17B0.16230.96320.10430.043*
H17C0.18140.79880.09880.043*
O180.21456 (10)1.28646 (10)0.28607 (9)0.0248 (2)
C190.06590 (15)1.37616 (15)0.31019 (16)0.0302 (3)
H19A0.01731.34120.36770.045*
H19B0.07071.48410.35620.045*
H19C0.00991.36340.22280.045*
O200.35830 (11)0.76068 (12)0.42650 (10)0.0312 (2)
C210.23193 (17)0.84306 (18)0.47107 (14)0.0322 (3)
O220.11015 (12)0.81482 (15)0.47434 (13)0.0452 (3)
C230.2701 (2)0.9684 (2)0.51145 (18)0.0450 (4)
H23A0.33300.92210.58960.067*
H23B0.17961.02970.53620.067*
H23C0.32231.03380.43440.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02693 (19)0.01603 (17)0.0364 (2)0.00475 (13)0.00359 (14)0.00326 (14)
C20.0166 (6)0.0141 (6)0.0289 (6)0.0034 (4)0.0025 (5)0.0002 (5)
N30.0214 (5)0.0197 (5)0.0247 (5)0.0049 (4)0.0030 (4)0.0024 (4)
C40.0199 (6)0.0288 (7)0.0260 (6)0.0061 (5)0.0036 (5)0.0027 (5)
C50.0248 (7)0.0315 (7)0.0273 (7)0.0073 (6)0.0039 (5)0.0033 (6)
N60.0226 (5)0.0127 (5)0.0274 (5)0.0042 (4)0.0026 (4)0.0034 (4)
C70.0198 (6)0.0190 (6)0.0405 (8)0.0052 (5)0.0000 (5)0.0113 (6)
O80.0358 (6)0.0157 (5)0.0515 (7)0.0058 (4)0.0038 (5)0.0094 (4)
C90.0333 (8)0.0275 (7)0.0409 (8)0.0067 (6)0.0005 (6)0.0187 (6)
C100.0245 (6)0.0127 (5)0.0204 (6)0.0049 (5)0.0016 (5)0.0038 (5)
C110.0206 (6)0.0179 (6)0.0200 (6)0.0075 (5)0.0002 (4)0.0062 (5)
C120.0198 (6)0.0175 (6)0.0200 (6)0.0041 (4)0.0019 (4)0.0044 (5)
C130.0261 (6)0.0151 (6)0.0174 (5)0.0064 (5)0.0000 (5)0.0036 (5)
C140.0217 (6)0.0196 (6)0.0240 (6)0.0091 (5)0.0004 (5)0.0059 (5)
C150.0196 (6)0.0194 (6)0.0243 (6)0.0038 (5)0.0023 (5)0.0065 (5)
O160.0211 (4)0.0170 (4)0.0303 (5)0.0082 (3)0.0020 (4)0.0035 (4)
C170.0240 (7)0.0261 (7)0.0361 (7)0.0109 (5)0.0056 (5)0.0061 (6)
O180.0244 (5)0.0154 (4)0.0291 (5)0.0067 (3)0.0030 (4)0.0017 (4)
C190.0272 (7)0.0177 (6)0.0388 (8)0.0046 (5)0.0097 (6)0.0015 (6)
O200.0287 (5)0.0387 (6)0.0271 (5)0.0107 (4)0.0029 (4)0.0092 (4)
C210.0339 (8)0.0385 (8)0.0226 (6)0.0085 (6)0.0043 (5)0.0066 (6)
O220.0312 (6)0.0562 (8)0.0564 (7)0.0090 (5)0.0007 (5)0.0290 (6)
C230.0506 (10)0.0543 (11)0.0388 (9)0.0167 (8)0.0028 (7)0.0222 (8)
Geometric parameters (Å, º) top
S1—C51.7240 (16)C12—H120.9300
S1—C21.7394 (13)C13—O181.3714 (14)
C2—N31.3067 (17)C13—C141.3884 (18)
C2—N61.4008 (17)C14—C151.3865 (17)
N3—C41.3669 (17)C14—H140.9300
C4—C51.347 (2)C15—H150.9300
C4—O201.3941 (17)O16—C171.4364 (16)
C5—H50.9300C17—H17A0.9600
N6—C71.3855 (17)C17—H17B0.9600
N6—C101.4433 (15)C17—H17C0.9600
C7—O81.2212 (16)O18—C191.4305 (16)
C7—C91.498 (2)C19—H19A0.9600
C9—H9A0.9600C19—H19B0.9600
C9—H9B0.9600C19—H19C0.9600
C9—H9C0.9600O20—C211.3663 (18)
C10—C111.3923 (17)C21—O221.1945 (18)
C10—C151.3924 (17)C21—C231.494 (2)
C11—O161.3667 (14)C23—H23A0.9600
C11—C121.3967 (17)C23—H23B0.9600
C12—C131.3989 (17)C23—H23C0.9600
C5—S1—C288.67 (7)O18—C13—C12123.00 (11)
N3—C2—N6120.83 (11)C14—C13—C12121.30 (11)
N3—C2—S1115.54 (10)C15—C14—C13119.16 (11)
N6—C2—S1123.63 (10)C15—C14—H14120.4
C2—N3—C4108.68 (11)C13—C14—H14120.4
C5—C4—N3118.10 (13)C14—C15—C10120.40 (11)
C5—C4—O20126.10 (12)C14—C15—H15119.8
N3—C4—O20115.62 (12)C10—C15—H15119.8
C4—C5—S1109.00 (10)C11—O16—C17117.33 (10)
C4—C5—H5125.5O16—C17—H17A109.5
S1—C5—H5125.5O16—C17—H17B109.5
C7—N6—C2120.34 (11)H17A—C17—H17B109.5
C7—N6—C10122.54 (11)O16—C17—H17C109.5
C2—N6—C10117.07 (10)H17A—C17—H17C109.5
O8—C7—N6119.83 (13)H17B—C17—H17C109.5
O8—C7—C9122.69 (12)C13—O18—C19117.54 (10)
N6—C7—C9117.48 (12)O18—C19—H19A109.5
C7—C9—H9A109.5O18—C19—H19B109.5
C7—C9—H9B109.5H19A—C19—H19B109.5
H9A—C9—H9B109.5O18—C19—H19C109.5
C7—C9—H9C109.5H19A—C19—H19C109.5
H9A—C9—H9C109.5H19B—C19—H19C109.5
H9B—C9—H9C109.5C21—O20—C4116.53 (11)
C11—C10—C15120.31 (11)O22—C21—O20122.45 (14)
C11—C10—N6119.22 (10)O22—C21—C23127.05 (15)
C15—C10—N6120.42 (11)O20—C21—C23110.50 (13)
O16—C11—C10116.17 (10)C21—C23—H23A109.5
O16—C11—C12123.96 (11)C21—C23—H23B109.5
C10—C11—C12119.87 (11)H23A—C23—H23B109.5
C11—C12—C13118.95 (11)C21—C23—H23C109.5
C11—C12—H12120.5H23A—C23—H23C109.5
C13—C12—H12120.5H23B—C23—H23C109.5
O18—C13—C14115.70 (10)
C5—S1—C2—N30.65 (10)C15—C10—C11—O16179.31 (11)
C5—S1—C2—N6179.91 (11)N6—C10—C11—O163.12 (17)
N6—C2—N3—C4179.64 (11)C15—C10—C11—C120.44 (18)
S1—C2—N3—C40.91 (14)N6—C10—C11—C12177.13 (11)
C2—N3—C4—C50.79 (17)O16—C11—C12—C13179.61 (11)
C2—N3—C4—O20174.60 (11)C10—C11—C12—C130.66 (18)
N3—C4—C5—S10.31 (16)C11—C12—C13—O18179.03 (11)
O20—C4—C5—S1174.54 (11)C11—C12—C13—C141.49 (18)
C2—S1—C5—C40.17 (10)O18—C13—C14—C15179.30 (11)
N3—C2—N6—C7176.71 (11)C12—C13—C14—C151.19 (19)
S1—C2—N6—C73.88 (17)C13—C14—C15—C100.06 (18)
N3—C2—N6—C105.82 (17)C11—C10—C15—C140.75 (18)
S1—C2—N6—C10173.58 (9)N6—C10—C15—C14176.78 (11)
C2—N6—C7—O81.16 (19)C10—C11—O16—C17168.59 (11)
C10—N6—C7—O8178.48 (11)C12—C11—O16—C1711.15 (17)
C2—N6—C7—C9179.13 (11)C14—C13—O18—C19169.30 (11)
C10—N6—C7—C91.80 (18)C12—C13—O18—C1911.20 (17)
C7—N6—C10—C1174.41 (16)C5—C4—O20—C2197.28 (16)
C2—N6—C10—C11102.99 (13)N3—C4—O20—C2187.75 (14)
C7—N6—C10—C15108.02 (14)C4—O20—C21—O2212.0 (2)
C2—N6—C10—C1574.57 (15)C4—O20—C21—C23167.56 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O160.962.573.1838 (19)122
C5—H5···O18i0.932.473.2465 (18)141
C15—H15···O8ii0.932.523.3117 (18)143
C17—H17C···O8iii0.962.353.2945 (19)170
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O5S
Mr336.36
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)9.1486 (11), 9.3592 (13), 10.2823 (8)
α, β, γ (°)69.212 (10), 82.910 (8), 77.220 (11)
V3)801.73 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent Xcalibur Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.919, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10576, 3822, 3281
Rint0.023
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.06
No. of reflections3822
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O160.962.573.1838 (19)122
C5—H5···O18i0.932.473.2465 (18)141
C15—H15···O8ii0.932.523.3117 (18)143
C17—H17C···O8iii0.962.353.2945 (19)170
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

References

First citationAgilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationChen, S., Chen, L., Le, N. T., Zhao, C., Sidduri, A., Lou, J. P., Michoud, C., Portland, L., Jackson, N. & Liu, J. J. (2007). Bioorg. Med. Chem. Lett. 17, 2134-2138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEriksson, B., Kurz, G., Hedberg, C. & Westman, J. (2007). Patent No. WO2007010273.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547–1577.  Web of Science CrossRef CAS Google Scholar
First citationLesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel'na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell. 27, 107–117.  CrossRef CAS Google Scholar
First citationLesyk, R., Zimenkovsky, B., Subtelna, I., Nektegayev, I. & Kazmirchuk, G. (2003). Acta Pol. Pharm. 60, 457–466.  PubMed CAS Google Scholar
First citationOttana, R., Carotti, S., Maccari, R., Landini, I., Chiricosta, G., Caciagli, B., Vigorita, M. G. & Mini, E. (2005). Bioorg. Med. Chem. Lett. 15, 3930–3933.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubtelna, I., Atamanyuk, D., Szymańska, E., Kieć-Kononowicz, K., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Bioorg. Med. Chem. 18, 5089–5101.  Google Scholar
First citationVana, J., Hanusek, J., Ruzicka, A. & Sedlak, M. (2009). J. Heterocycl. Chem. 46, 635–639.  CAS Google Scholar
First citationVassilev, L. T., Tovar, C., Chen, S., Knezevic, D., Zhao, X., Sun, H., Heimbrook, D. C. & Chen, L. (2006). Proc. Natl Acad. Sci. USA, 103, 10660–10665.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o356-o357
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds