[Journal logo]

Volume 69 
Part 3 
Pages o343-o344  
March 2013  

Received 14 January 2013
Accepted 30 January 2013
Online 6 February 2013

Key indicators
Single-crystal X-ray study
T = 153 K
Mean [sigma](C-C) = 0.007 Å
H completeness 96%
Disorder in main residue
R = 0.053
wR = 0.152
Data-to-parameter ratio = 9.9
Details
Open access

Bis(2-carboxy-N-{[1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene]methylimino}anilinium) sulfate monohydrate

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, and bPhotonics Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
Correspondence e-mail: g.gainsford@irl.cri.nz

The asymmetric unit of the title compound, 2C20H22N3O3+·SO42-·H2O, contains four cations, two sulfate anions and two lattice water molecules. One of the four cations shows a different conformation of the hydroxyethyl group; the remaining three are all essentially superimposable. Two cations exhibit two-site orientational disorder [ratios = 0.524 (5):0.476 (5) and 0.616 (6):0.384 (6)] of the last two atoms of their hydroxyethyl groups, and one water molecule is disordered over two positions in a 0.634 (13):0.366 (13) ratio. Each imine H atom is intramolecularly in contact with the adjacent carboxyl O atom, forming an S(6) motif, while all the carboxylic acid H atoms are hydrogen bonded to O atoms of the sulfate anions. Other notable hydrogen-bond interactions involve (methylene, phenyl and imine chain) C-H...O (sulfate and carboxyl) and O-H...O(water) contacts, making up a comprehensive three-dimensional network involving D22(n), with n = 4-6 and 15-16, and C22(17) classical hydrogen-bond motifs. The crystal investigated was twinned by pseudomerohedry with a twin component ratio of 0.4745 (12):0.5255 (12).

Related literature

For details of a related synthesis, see: Bhuiyan et al. (2011[Bhuiyan, M., Delower, H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177-187.]). For a closely related structure, see: Gainsford et al. (2013[Gainsford, G. J., Ashraf, M. & Kay, A. J. (2013). Unpublished work.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C20H22N3O3+·SO42-·H2O

  • Mr = 816.88

  • Triclinic, [P \overline 1]

  • a = 12.2530 (9) Å

  • b = 14.6114 (3) Å

  • c = 23.2442 (4) Å

  • [alpha] = 71.681 (1)°

  • [beta] = 87.688 (2)°

  • [gamma] = 82.627 (7)°

  • V = 3917.9 (3) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 1.33 mm-1

  • T = 153 K

  • 0.68 × 0.40 × 0.24 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.66, Tmax = 1.0

  • 24005 measured reflections

  • 10558 independent reflections

  • 9283 reflections with I > 2[sigma](I)

  • Rint = 0.044

  • [theta]max = 58.9°

Refinement
  • R[F2 > 2[sigma](F2)] = 0.053

  • wR(F2) = 0.152

  • S = 1.10

  • 10558 reflections

  • 1069 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.52 e Å-3

  • [Delta][rho]min = -0.53 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O32A-H3A0...O101 0.84 1.94 2.644 (8) 140
O2-H2O...O14 0.84 1.66 2.457 (5) 158
N1-H1N...O1 0.70 (5) 2.08 (5) 2.652 (5) 139 (6)
O3-H3O...O13i 0.84 1.97 2.792 (5) 165
N101-H11N...O101 0.97 (5) 1.90 (5) 2.642 (6) 132 (4)
N201-H21N...O201 0.90 (5) 1.89 (6) 2.626 (6) 138 (5)
O203-H23O...O701ii 0.84 1.95 2.741 (6) 157
N301-H31N...O301 0.96 (5) 1.95 (5) 2.654 (5) 129 (4)
O102-H102...O21iii 0.84 1.68 2.509 (5) 169
O202-H202...O13iv 0.84 1.81 2.565 (5) 149
O302-H302...O22v 0.84 1.77 2.562 (6) 157
C8-H8...O11vi 0.95 2.55 3.402 (6) 150
C12B-H12C...O301 0.99 2.41 3.37 (2) 164
C15-H15...O12i 0.95 2.29 3.143 (6) 149
C19-H19B...O11vi 0.99 2.39 3.357 (7) 166
C20-H20B...O201vi 0.99 2.41 3.343 (6) 157
C220-H22B...O1vi 0.99 2.48 3.456 (6) 168
C39-H39B...O23 0.99 2.53 3.514 (7) 175
C108-H108...O24 0.95 2.26 3.073 (6) 143
C114-H114...O102vii 0.95 2.54 3.323 (7) 139
C115-H115...O23v 0.95 2.39 3.202 (7) 143
C205-H205...O21v 0.95 2.57 3.359 (7) 141
C208-H208...O12 0.95 2.26 3.119 (5) 150
C212-H212...O80A 0.95 2.60 3.486 (10) 156
C215-H215...O11vi 0.95 2.27 3.137 (7) 152
C306-H306...O203viii 0.95 2.36 3.154 (7) 140
C308-H308...O23 0.95 2.39 3.278 (6) 155
C315-H315...O24iii 0.95 2.26 3.150 (6) 156
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z; (v) -x+1, -y, -z+1; (vi) -x, -y+1, -z; (vii) x, y-1, z; (viii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2718 ).


Acknowledgements

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment and the NZ Foundation for Research, Science & Technology for funding.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bhuiyan, M., Delower, H., Ashraf, M., Teshome, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177-187.  [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Gainsford, G. J., Ashraf, M. & Kay, A. J. (2013). Unpublished work.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2013). E69, o343-o344   [ doi:10.1107/S1600536813003188 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.