[Journal logo]

Volume 69 
Part 3 
Pages m165-m166  
March 2013  

Received 30 January 2013
Accepted 15 February 2013
Online 23 February 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.041
wR = 0.107
Data-to-parameter ratio = 44.9
Details
Open access

Bis{2-[(guanidinoimino)methyl]phenolato-[kappa]3N,N',O}cobalt(III) chloride hemihydrate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Correspondence e-mail: vassilyeva@univ.kiev.ua

The title compound, [Co(C8H9N4O)2]Cl·0.5H2O, is a solvatomorph of the corresponding trihydrate. Unlike in the structure of the latter compound, there are two different cations in the asymmetric unit of the title compound. The ligand molecules are deprotonated at the phenol O atom and octahedrally coordinate the CoIII atoms through the azomethine N and phenolate O atoms in a mer configuration. In the crystal, the cations, chloride ions and lattice water molecules are linked by N-H...O, N-H...Cl, O-H...Cl and O-H...O interactions, forming a two-dimensional network parallel to (10-1).

Related literature

For direct synthesis using metal powders, see: Chygorin et al. (2012[Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boca, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.]). For solvatomorphism, see: Desiraju (2004[Desiraju, G. R. (2004). Cryst. Growth Des. 4, 1089-1090.]); Bernstein (2005[Bernstein, J. (2005). Cryst. Growth Des. 5, 1661-1662.]); Nangia (2006[Nangia, A. (2006). Cryst. Growth Des. 6, 2-4.]); Brittain (2012[Brittain, H. G. (2012). J. Pharm. Sci. 101, 464-484.]). For the structure of the trihydrate solvatomorph of the title compound, see: Chumakov et al. (2006[Chumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60-67.]). For the structures of two different solvated crystalline forms of a related Schiff base ligand, see: Gutierrez et al. (2011[Gutierrez, J., Eisenberg, R., Herrensmith, G., Tobin, T., Li, T. & Long, S. (2011). Acta Cryst. C67, o310-o314.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H9N4O)2]Cl·0.5H2O

  • Mr = 457.77

  • Triclinic, [P \overline 1]

  • a = 9.9043 (2) Å

  • b = 10.2078 (2) Å

  • c = 18.5358 (4) Å

  • [alpha] = 100.773 (2)°

  • [beta] = 92.019 (2)°

  • [gamma] = 91.458 (2)°

  • V = 1838.84 (7) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.11 mm-1

  • T = 100 K

  • 0.39 × 0.31 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), derived from an expression by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.720, Tmax = 0.864

  • 84837 measured reflections

  • 23430 independent reflections

  • 19519 reflections with I > 2[sigma](I)

  • Rint = 0.035

Refinement
  • R[F2 > 2[sigma](F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.06

  • 23430 reflections

  • 522 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 1.07 e Å-3

  • [Delta][rho]min = -0.80 e Å-3

Table 1
Selected bond lengths (Å)

Co1-N125 1.8914 (9)
Co1-N122 1.8955 (8)
Co1-O11 1.8967 (8)
Co1-N222 1.8987 (9)
Co1-N225 1.9017 (9)
Co1-O21 1.9290 (8)
Co2-N322 1.8863 (8)
Co2-N422 1.8918 (8)
Co2-N425 1.8945 (9)
Co2-N325 1.9026 (9)
Co2-O31 1.9041 (8)
Co2-O41 1.9202 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N123-H123...O21i 0.88 2.29 2.8823 (12) 124
N125-H125...Cl1 0.88 2.36 3.1152 (9) 144
N126-H12B...O21i 0.88 2.44 3.0709 (13) 129
N223-H223...Cl2ii 0.88 2.34 3.0948 (10) 144
N226-H22A...O1 0.88 1.95 2.8177 (14) 167
N226-H22B...Cl2ii 0.88 2.7 3.4131 (12) 138
N323-H323...O41iii 0.88 2.17 2.8311 (11) 131
N325-H325...Cl2 0.88 2.77 3.5086 (9) 142
N326-H32A...Cl2 0.88 2.59 3.3801 (10) 149
N326-H32B...O1iv 0.88 2.14 2.9861 (14) 162
N423-H423...Cl1v 0.88 2.31 3.0960 (9) 149
N425-H425...Cl2vi 0.88 2.77 3.3659 (10) 126
N426-H42B...Cl1v 0.88 2.48 3.2573 (10) 148
O1-H1B...Cl1vii 0.83 (2) 2.28 (2) 3.0538 (10) 155 (2)
O1-H1A...O31viii 0.86 (2) 2.23 (2) 3.0227 (12) 153 (2)
O1-H1A...O41viii 0.86 (2) 2.28 (2) 2.8568 (12) 125 (2)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x, y+1, z+1; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+2, -z+2; (vii) x-1, y, z; (viii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2724 ).


Acknowledgements

The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  [CrossRef] [details]
Bernstein, J. (2005). Cryst. Growth Des. 5, 1661-1662.  [CrossRef] [ChemPort]
Brittain, H. G. (2012). J. Pharm. Sci. 101, 464-484.  [ISI] [CrossRef] [ChemPort] [PubMed]
Chumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60-67.  [ISI] [CrossRef] [ChemPort]
Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boca, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.  [ISI] [CSD] [CrossRef] [ChemPort] [PubMed]
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.  [CrossRef] [details]
Desiraju, G. R. (2004). Cryst. Growth Des. 4, 1089-1090.  [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Gutierrez, J., Eisenberg, R., Herrensmith, G., Tobin, T., Li, T. & Long, S. (2011). Acta Cryst. C67, o310-o314.  [CSD] [CrossRef] [details]
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nangia, A. (2006). Cryst. Growth Des. 6, 2-4.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]


Acta Cryst (2013). E69, m165-m166   [ doi:10.1107/S1600536813004534 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.