organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-tert-Butyl 2-ethyl 5-chloro-3-(2-furo­yl)-1H-indole-1,2-di­carboxyl­ate

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: hassam@sun.ac.za

(Received 20 February 2013; accepted 20 February 2013; online 28 February 2013)

In the title compound, C21H20ClNO6, the furan moiety is located above the mean plane of the indole ring and displays rotational disorder (i.e. rotation through 180°); the site occupancy of the major component is 0.809 (6). In the crystal, C—H⋯O inter­actions link the mol­ecules into chains which run parallel to the b axis.

Related literature

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012[Hassam, M., Basson, A. E., Liotta, D. C., Morris, L., Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470-475.]) and for a recent review on stages of non-nucleoside reverse transcriptase inhibitors, see: Reynolds et al. (2012[Reynolds, C., Koning, C. B., Pelly, S. C., Otterlo, W. A. L. & Bode, M. L. (2012). Chem. Soc. Rev. 41, 4657-4670.]). For the crystal structures of closely related compounds, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans 2, pp. 787-797.]), Hassam & Smith (2012[Hassam, M. & Smith, V. J. (2012). Acta Cryst. E68, o3357.], 2013[Hassam, M. & Smith, V. J. (2013). Acta Cryst. E69, o237.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20ClNO6

  • Mr = 417.83

  • Monoclinic, P 21 /c

  • a = 9.8354 (8) Å

  • b = 8.0938 (7) Å

  • c = 25.435 (2) Å

  • β = 99.344 (1)°

  • V = 1997.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.32 × 0.32 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.947

  • 11690 measured reflections

  • 4483 independent reflections

  • 3877 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.05

  • 4483 reflections

  • 279 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯O5i 0.95 2.37 3.187 (3) 144
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

Ethyl-5-chloro-1H-indole-2-carboxylate has been employed as a building block in the synthesis of various anti-HIV active molecules particularly in the search for novel non-nucleoside reverse transcriptase inhibitors (Hassam et al. 2012, Reynolds et al. 2012). Protection on the indole NH of ethyl 5-chloro-3-(2-furoyl)-1H-indole-2-carboxylate was carried out with di-tert-butyl-dicarbonate using 4-dimethylaminopyridine as a catalytic base.

The title compound, C21H20ClNO6, crystallizes with one molecule in the asymmetric unit (Fig. 1). The furan group is disordered over two positions with major (A) and minor (B) components in a 0.809 (6):0.191 (6) ratio. The dihedral angles between the mean planes of the 5-chloro indole ring (Cl1/N1/C1—C8) and the disordered furan rings (O6A/C10/C11A/C13A and O6B/C10/C11B/C13B) are 58.01 (13)° and 59.70 (68)°, respectively. The angles between the mean planes of the indole ring and the N-tert-butyloxy, ethyl ester and the ketone groups are 26.90 (04)°, 55.71 (04)° and 46.18 (05)°, respectively. The torsion angles of O5/C9/C10/O6A and O5/C9/C10/O6B are 12.1 (3)° and -157.5 (1)°, respectively, thereby describing the major component in a cis conformation and the minor component in a trans conformation. Molecular packing shows the molecules being connected via weak C13A—H13A···O5 intermolecular interactions that link molecules into chains which run parallel to the b axis (Fig. 2, Table 1).

Related literature top

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012) and for a recent review on stages of non-nucleoside reverse transcriptase inhibitors, see: Reynolds et al. (2012). For the crystal structures of aclosely related compounds, see: Beddoes et al. (1986), Hassam & Smith (2012), Hassam & Smith (2013).

Experimental top

A catalytic amount of 4-dimethylaminopyridine was added to a solution of ethyl 5-chloro-3-(2-furoyl)-1H-indole-2-carboxylate (1.00 g, 3.14 mmol) in THF (20 ml), followed by the addition of di-tert-butyl dicarbonate (1.10 g, 5.04 mmol). The reaction mixture was then stirred at room temperature for 2 h. The solvent was removed under vacuum and the resulting residue was recrystallized from a hexane/dichloromethane solvent (4:1) to obtain the title compound as a colourless crystalline material (1.14 g, 87%). 1H NMR (300 MHz, CDCl3) δ 8.08 (dd, J = 9.0, 0.5 Hz, 1H), 7.74 (dd, J = 2.1, 0.5 Hz, 1H), 7.65 (dd, J = 1.7, 0.8 Hz, 1H), 7.39 (dd, J = 9.0, 2.1 H, 1H), 7.20 (dd, J = 3.6, 0.8 Hz, 1H), 6.59 (dd, J = 3.6, 1.7 H, 1H), 4.17 (q, J = 7.2 Hz, 2H), 1.63 (s, 9H), 1.15 (t, J = 7.2 Hz, 3H). 13C NMR (75 Hz, CDCl3) 177.17, 161.30, 152.79, 148. 39, 147.33, 134.24, 133.16, 130.17, 127.59, 127.36, 121.28, 120.65, 119.81, 116.35, 112.80, 86.62, 62.43, 27.87, 13.78. HRMS calculated for C21H21ClNO6 [M+H]+, 418.1057 found 418.53.

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms were placed geometrically [C—H = 0.95 - 0.99 Å; with Uiso(H) = 1.2 - 1.5Ueq(C)] and constrained to ride on their parent atoms. The site-occupancy factors of the disordered thiophene moieties were initially set to 0.5 and then refined, leading to an occupancy of 0.809 (6) and 0.191 (6) for the major and minor components, respectively. Bond lengths for the furan and phenyl moieties were restrained to be similar (s.u. = 0.002 Å). Atom displacement parameters for overlaping atoms of the disordered models were constrained to be each identical.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme and the displacement ellipsoids drawn at the 50% probability level. The disorder of the furan moiety is shown different colours, major (blue) and minor (green).
[Figure 2] Fig. 2. The diagram shows the C—H···O hydrogen bond chains which propagate parallel to the b axis.
1-tert-Butyl 2-ethyl 5-chloro-3-(2-furoyl)-1H-indole-1,2-dicarboxylate top
Crystal data top
C21H20ClNO6F(000) = 872
Mr = 417.83Dx = 1.389 Mg m3
Monoclinic, P21/cMelting point: 378(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8354 (8) ÅCell parameters from 5304 reflections
b = 8.0938 (7) Åθ = 2.4–27.9°
c = 25.435 (2) ŵ = 0.23 mm1
β = 99.344 (1)°T = 100 K
V = 1997.9 (3) Å3Square block, colourless
Z = 40.32 × 0.32 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
4483 independent reflections
Radiation source: fine-focus sealed tube, Bruker SMART Apex3877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.930, Tmax = 0.947k = 104
11690 measured reflectionsl = 3133
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.8831P]
where P = (Fo2 + 2Fc2)/3
4483 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.29 e Å3
8 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H20ClNO6V = 1997.9 (3) Å3
Mr = 417.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8354 (8) ŵ = 0.23 mm1
b = 8.0938 (7) ÅT = 100 K
c = 25.435 (2) Å0.32 × 0.32 × 0.24 mm
β = 99.344 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4483 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3877 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.947Rint = 0.019
11690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0348 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
4483 reflectionsΔρmin = 0.38 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.77842 (4)0.54454 (4)0.051345 (13)0.02592 (10)
O10.25661 (9)0.04213 (12)0.01491 (4)0.0207 (2)
N10.45710 (11)0.11938 (13)0.06875 (4)0.0152 (2)
C10.53993 (13)0.12814 (16)0.11858 (5)0.0157 (3)
O20.27094 (9)0.06519 (12)0.10504 (3)0.0189 (2)
C20.51962 (13)0.21382 (16)0.03288 (5)0.0157 (2)
O30.50752 (10)0.12594 (12)0.16190 (4)0.0223 (2)
C30.47829 (14)0.24137 (16)0.02143 (5)0.0190 (3)
H30.39640.19360.04030.023*
O40.51187 (10)0.11461 (12)0.20738 (3)0.0206 (2)
C40.56192 (13)0.34160 (16)0.04673 (5)0.0214 (3)
H40.53790.36240.08380.026*
O50.81234 (10)0.13738 (12)0.18938 (4)0.0221 (2)
C50.68105 (13)0.41230 (16)0.01829 (5)0.0198 (3)
C60.72402 (13)0.38397 (15)0.03549 (5)0.0178 (3)
H60.80680.43080.05400.021*
C70.64034 (12)0.28344 (15)0.06143 (5)0.0160 (3)
C80.65137 (13)0.22643 (16)0.11585 (5)0.0158 (2)
C90.76525 (12)0.25249 (16)0.16090 (5)0.0167 (3)
C100.81371 (13)0.42143 (17)0.17023 (5)0.0177 (3)
C140.51626 (12)0.02212 (16)0.16433 (5)0.0161 (3)
C150.50330 (16)0.02643 (19)0.25714 (5)0.0262 (3)
H15A0.45070.07730.24900.031*
H15B0.45370.09550.28000.031*
C160.64444 (18)0.0127 (2)0.28626 (6)0.0386 (4)
H16A0.69770.08970.29300.058*
H16C0.69110.08730.26460.058*
H16B0.63700.06600.32030.058*
C170.31674 (13)0.06954 (16)0.05885 (5)0.0164 (3)
C180.12943 (13)0.00596 (17)0.10920 (5)0.0191 (3)
C190.02392 (14)0.12342 (19)0.07961 (6)0.0266 (3)
H19A0.03490.12790.04200.040*
H19B0.03760.23400.09530.040*
H19C0.06900.08430.08240.040*
C200.13131 (15)0.01449 (19)0.16902 (6)0.0255 (3)
H20A0.15470.12700.18160.038*
H20B0.20020.06290.18700.038*
H20C0.04020.01510.17700.038*
C210.11243 (16)0.16979 (18)0.08904 (6)0.0272 (3)
H21A0.18830.23760.10720.041*
H21C0.11330.17150.05060.041*
H21B0.02460.21420.09630.041*
O6A0.9318 (4)0.4474 (3)0.20578 (19)0.0224 (4)0.809 (6)
C11A0.7582 (4)0.5688 (4)0.1527 (3)0.0194 (6)0.809 (6)
H11A0.67730.58510.12730.023*0.809 (6)
C12A0.8436 (3)0.6940 (4)0.17952 (12)0.0211 (6)0.809 (6)
H12A0.83060.81010.17630.025*0.809 (6)
C13A0.9470 (3)0.6138 (4)0.21058 (12)0.0242 (6)0.809 (6)
H13A1.02100.66680.23290.029*0.809 (6)
O6B0.7353 (13)0.5546 (12)0.1514 (8)0.0194 (6)0.191 (6)
C11B0.929 (2)0.4726 (19)0.2027 (13)0.0224 (4)0.191 (6)
H11B0.99780.40490.22280.027*0.191 (6)
C12B0.9271 (18)0.6477 (18)0.2006 (6)0.0242 (6)0.191 (6)
H12B0.99660.72040.21750.029*0.191 (6)
C13B0.8072 (14)0.691 (2)0.1701 (6)0.0211 (6)0.191 (6)
H13B0.77740.80170.16280.025*0.191 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0375 (2)0.01775 (17)0.02629 (18)0.00140 (14)0.01670 (14)0.00393 (13)
O10.0191 (5)0.0232 (5)0.0189 (5)0.0008 (4)0.0000 (4)0.0042 (4)
N10.0155 (5)0.0154 (5)0.0146 (5)0.0006 (4)0.0022 (4)0.0001 (4)
C10.0157 (6)0.0156 (6)0.0155 (6)0.0022 (5)0.0014 (4)0.0012 (5)
O20.0148 (4)0.0237 (5)0.0185 (4)0.0018 (4)0.0034 (3)0.0016 (4)
C20.0172 (6)0.0141 (6)0.0168 (6)0.0033 (5)0.0054 (5)0.0010 (5)
O30.0293 (5)0.0167 (5)0.0204 (5)0.0011 (4)0.0027 (4)0.0004 (4)
C30.0210 (6)0.0181 (6)0.0174 (6)0.0047 (5)0.0019 (5)0.0017 (5)
O40.0288 (5)0.0186 (5)0.0156 (4)0.0014 (4)0.0072 (4)0.0002 (4)
C40.0305 (7)0.0195 (7)0.0150 (6)0.0076 (6)0.0061 (5)0.0008 (5)
O50.0212 (5)0.0219 (5)0.0219 (5)0.0017 (4)0.0003 (4)0.0036 (4)
C50.0266 (7)0.0141 (6)0.0214 (6)0.0045 (5)0.0122 (5)0.0022 (5)
C60.0186 (6)0.0150 (6)0.0207 (6)0.0029 (5)0.0061 (5)0.0005 (5)
C70.0173 (6)0.0145 (6)0.0165 (6)0.0041 (5)0.0038 (5)0.0001 (5)
C80.0160 (6)0.0149 (6)0.0166 (6)0.0016 (5)0.0032 (5)0.0000 (5)
C90.0140 (6)0.0208 (7)0.0156 (6)0.0010 (5)0.0039 (5)0.0009 (5)
C100.0149 (6)0.0230 (7)0.0152 (6)0.0019 (5)0.0021 (5)0.0004 (5)
C140.0130 (6)0.0186 (6)0.0165 (6)0.0001 (5)0.0013 (4)0.0002 (5)
C150.0401 (8)0.0247 (7)0.0161 (6)0.0044 (6)0.0112 (6)0.0008 (5)
C160.0463 (10)0.0455 (10)0.0211 (7)0.0115 (8)0.0030 (7)0.0079 (7)
C170.0149 (6)0.0137 (6)0.0203 (6)0.0021 (5)0.0025 (5)0.0009 (5)
C180.0133 (6)0.0207 (7)0.0239 (7)0.0016 (5)0.0051 (5)0.0025 (5)
C190.0182 (7)0.0284 (8)0.0327 (8)0.0033 (6)0.0033 (6)0.0008 (6)
C200.0216 (7)0.0316 (8)0.0249 (7)0.0040 (6)0.0091 (5)0.0031 (6)
C210.0283 (7)0.0214 (7)0.0340 (8)0.0049 (6)0.0114 (6)0.0045 (6)
O6A0.0205 (5)0.0241 (9)0.0202 (8)0.0030 (8)0.0043 (4)0.0034 (10)
C11A0.0118 (14)0.0253 (9)0.0207 (7)0.0007 (9)0.0015 (12)0.0004 (8)
C12A0.0194 (16)0.0205 (7)0.0230 (14)0.0035 (13)0.0019 (11)0.0011 (9)
C13A0.0259 (12)0.0246 (15)0.0199 (14)0.0089 (10)0.0031 (8)0.0012 (9)
O6B0.0118 (14)0.0253 (9)0.0207 (7)0.0007 (9)0.0015 (12)0.0004 (8)
C11B0.0205 (5)0.0241 (9)0.0202 (8)0.0030 (8)0.0043 (4)0.0034 (10)
C12B0.0259 (12)0.0246 (15)0.0199 (14)0.0089 (10)0.0031 (8)0.0012 (9)
C13B0.0194 (16)0.0205 (7)0.0230 (14)0.0035 (13)0.0019 (11)0.0011 (9)
Geometric parameters (Å, º) top
Cl1—C51.7411 (13)C15—H15A0.9900
O1—C171.1973 (15)C15—H15B0.9900
N1—C11.3929 (15)C16—H16A0.9800
N1—C21.4059 (16)C16—H16C0.9800
N1—C171.4209 (16)C16—H16B0.9800
C1—C81.3651 (18)C18—C211.5121 (19)
C1—C141.4943 (17)C18—C191.5145 (19)
O2—C171.3253 (15)C18—C201.5203 (19)
O2—C181.4919 (15)C19—H19A0.9800
C2—C31.3933 (17)C19—H19B0.9800
C2—C71.4053 (17)C19—H19C0.9800
O3—C141.2023 (16)C20—H20A0.9800
C3—C41.3859 (19)C20—H20B0.9800
C3—H30.9500C20—H20C0.9800
O4—C141.3329 (15)C21—H21A0.9800
O4—C151.4672 (16)C21—H21C0.9800
C4—C51.3959 (14)C21—H21B0.9800
C4—H40.9500O6A—C13A1.359 (3)
O5—C91.2240 (16)C11A—C12A1.418 (3)
C5—C61.3836 (13)C11A—H11A0.9500
C6—C71.3968 (13)C12A—C13A1.349 (3)
C6—H60.9500C12A—H12A0.9500
C7—C81.4463 (16)C13A—H13A0.9500
C8—C91.4816 (17)O6B—C13B1.357 (3)
C9—C101.4548 (19)C11B—C12B1.418 (4)
C10—C11A1.357 (3)C11B—H11B0.9500
C10—C11B1.357 (4)C12B—C13B1.348 (3)
C10—O6B1.366 (3)C12B—H12B0.9500
C10—O6A1.367 (2)C13B—H13B0.9500
C15—C161.497 (2)
C1—N1—C2108.06 (10)H16A—C16—H16C109.5
C1—N1—C17125.70 (10)C15—C16—H16B109.5
C2—N1—C17123.65 (10)H16A—C16—H16B109.5
C8—C1—N1109.83 (11)H16C—C16—H16B109.5
C8—C1—C14127.02 (11)O1—C17—O2129.43 (12)
N1—C1—C14122.51 (11)O1—C17—N1122.44 (12)
C17—O2—C18121.78 (10)O2—C17—N1108.11 (10)
C3—C2—C7122.29 (12)O2—C18—C21109.35 (11)
C3—C2—N1129.98 (12)O2—C18—C19109.57 (11)
C7—C2—N1107.74 (10)C21—C18—C19113.13 (12)
C4—C3—C2117.04 (12)O2—C18—C20101.33 (10)
C4—C3—H3121.5C21—C18—C20111.39 (12)
C2—C3—H3121.5C19—C18—C20111.40 (12)
C14—O4—C15116.71 (10)C18—C19—H19A109.5
C3—C4—C5120.71 (12)C18—C19—H19B109.5
C3—C4—H4119.6H19A—C19—H19B109.5
C5—C4—H4119.6C18—C19—H19C109.5
C6—C5—C4122.72 (12)H19A—C19—H19C109.5
C6—C5—Cl1118.40 (9)H19B—C19—H19C109.5
C4—C5—Cl1118.87 (9)C18—C20—H20A109.5
C5—C6—C7117.05 (11)C18—C20—H20B109.5
C5—C6—H6121.5H20A—C20—H20B109.5
C7—C6—H6121.5C18—C20—H20C109.5
C6—C7—C2120.18 (11)H20A—C20—H20C109.5
C6—C7—C8132.81 (11)H20B—C20—H20C109.5
C2—C7—C8107.00 (10)C18—C21—H21A109.5
C1—C8—C7107.37 (11)C18—C21—H21C109.5
C1—C8—C9123.78 (11)H21A—C21—H21C109.5
C7—C8—C9128.65 (11)C18—C21—H21B109.5
O5—C9—C10122.45 (11)H21A—C21—H21B109.5
O5—C9—C8121.01 (12)H21C—C21—H21B109.5
C10—C9—C8116.51 (11)C13A—O6A—C10106.33 (19)
C11A—C10—C11B100.6 (7)C10—C11A—C12A107.2 (3)
C11B—C10—O6B110.0 (9)C10—C11A—H11A126.4
C11A—C10—O6A109.6 (2)C12A—C11A—H11A126.4
O6B—C10—O6A118.8 (7)C13A—C12A—C11A105.6 (3)
C11A—C10—C9132.0 (2)C13A—C12A—H12A127.2
C11B—C10—C9127.3 (7)C11A—C12A—H12A127.2
O6B—C10—C9122.2 (6)C12A—C13A—O6A111.3 (3)
O6A—C10—C9118.21 (14)C12A—C13A—H13A124.4
O3—C14—O4126.20 (12)O6A—C13A—H13A124.4
O3—C14—C1123.44 (12)C13B—O6B—C10106.7 (13)
O4—C14—C1110.32 (11)C10—C11B—C12B106.0 (11)
O4—C15—C16110.56 (12)C10—C11B—H11B127.0
O4—C15—H15A109.5C12B—C11B—H11B127.0
C16—C15—H15A109.5C13B—C12B—C11B106.8 (15)
O4—C15—H15B109.5C13B—C12B—H12B126.6
C16—C15—H15B109.5C11B—C12B—H12B126.6
H15A—C15—H15B108.1C12B—C13B—O6B110.3 (17)
C15—C16—H16A109.5C12B—C13B—H13B124.9
C15—C16—H16C109.5O6B—C13B—H13B124.9
C2—N1—C1—C80.90 (14)C8—C9—C10—O6A170.0 (3)
C17—N1—C1—C8161.26 (11)C15—O4—C14—O33.66 (19)
C2—N1—C1—C14170.51 (11)C15—O4—C14—C1173.96 (11)
C17—N1—C1—C1427.33 (19)C8—C1—C14—O3116.54 (15)
C1—N1—C2—C3178.85 (13)N1—C1—C14—O353.33 (18)
C17—N1—C2—C318.5 (2)C8—C1—C14—O461.16 (17)
C1—N1—C2—C71.16 (13)N1—C1—C14—O4128.97 (12)
C17—N1—C2—C7161.45 (11)C14—O4—C15—C1688.55 (15)
C7—C2—C3—C40.00 (19)C18—O2—C17—O16.0 (2)
N1—C2—C3—C4179.99 (12)C18—O2—C17—N1175.66 (10)
C2—C3—C4—C50.72 (19)C1—N1—C17—O1169.19 (12)
C3—C4—C5—C61.7 (2)C2—N1—C17—O131.29 (19)
C3—C4—C5—Cl1177.20 (10)C1—N1—C17—O212.35 (17)
C4—C5—C6—C71.74 (19)C2—N1—C17—O2147.17 (11)
Cl1—C5—C6—C7177.11 (9)C17—O2—C18—C2158.82 (15)
C5—C6—C7—C20.99 (18)C17—O2—C18—C1965.71 (15)
C5—C6—C7—C8179.53 (13)C17—O2—C18—C20176.51 (11)
C3—C2—C7—C60.15 (19)C11A—C10—O6A—C13A0.9 (6)
N1—C2—C7—C6179.86 (11)C11B—C10—O6A—C13A14 (13)
C3—C2—C7—C8179.03 (12)O6B—C10—O6A—C13A4.8 (11)
N1—C2—C7—C80.98 (13)C9—C10—O6A—C13A174.7 (3)
N1—C1—C8—C70.28 (14)C11B—C10—C11A—C12A3.5 (19)
C14—C1—C8—C7170.64 (12)O6B—C10—C11A—C12A150 (7)
N1—C1—C8—C9175.47 (11)O6A—C10—C11A—C12A1.5 (6)
C14—C1—C8—C94.5 (2)C9—C10—C11A—C12A173.4 (2)
C6—C7—C8—C1179.12 (13)C10—C11A—C12A—C13A1.4 (5)
C2—C7—C8—C10.44 (14)C11A—C12A—C13A—O6A0.8 (5)
C6—C7—C8—C94.2 (2)C10—O6A—C13A—C12A0.0 (5)
C2—C7—C8—C9174.43 (12)C11A—C10—O6B—C13B24 (5)
C1—C8—C9—O541.90 (19)C11B—C10—O6B—C13B3 (3)
C7—C8—C9—O5132.21 (14)O6A—C10—O6B—C13B6.5 (19)
C1—C8—C9—C10136.08 (13)C9—C10—O6B—C13B176.0 (10)
C7—C8—C9—C1049.81 (18)C11A—C10—C11B—C12B0 (3)
O5—C9—C10—C11A162.5 (4)O6B—C10—C11B—C12B5 (3)
C8—C9—C10—C11A15.5 (4)O6A—C10—C11B—C12B167 (15)
O5—C9—C10—C11B14 (2)C9—C10—C11B—C12B176.6 (12)
C8—C9—C10—C11B168 (2)C10—C11B—C12B—C13B4 (3)
O5—C9—C10—O6B157.6 (11)C11B—C12B—C13B—O6B2 (3)
C8—C9—C10—O6B20.4 (11)C10—O6B—C13B—C12B1 (2)
O5—C9—C10—O6A12.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.452.9774 (16)115
C13A—H13A···O5i0.952.373.187 (3)144
C19—H19A···O10.982.493.0985 (17)120
C21—H21C···O10.982.493.0615 (17)117
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H20ClNO6
Mr417.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.8354 (8), 8.0938 (7), 25.435 (2)
β (°) 99.344 (1)
V3)1997.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.32 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.930, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
11690, 4483, 3877
Rint0.019
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.05
No. of reflections4483
No. of parameters279
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O5i0.952.373.187 (3)144
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

MH thanks Professor Willem A. L. van Otterlo and Dr S. C. Pelly for their valuable input and research oversight. Stellenbosch University's Science Faculty is also acknowledged for providing laboratory space and financial research support (Subcommittee B). The South African National Research Foundation (NRF), Pretoria, is also acknowledged for providing research funds.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassam, M., Basson, A. E., Liotta, D. C., Morris, L., Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470–475.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHassam, M. & Smith, V. J. (2012). Acta Cryst. E68, o3357.  CSD CrossRef IUCr Journals Google Scholar
First citationHassam, M. & Smith, V. J. (2013). Acta Cryst. E69, o237.  CSD CrossRef IUCr Journals Google Scholar
First citationReynolds, C., Koning, C. B., Pelly, S. C., Otterlo, W. A. L. & Bode, M. L. (2012). Chem. Soc. Rev. 41, 4657–4670.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds