supplementary materials


zq2195 scheme

Acta Cryst. (2013). E69, m154-m155    [ doi:10.1107/S1600536813003772 ]

Poly[aqua([mu]2-4,4'-bipyridine-[kappa]2N:N')(ethane-1,2-diol-[kappa]O)([mu]2-sulfato-[kappa]2O:O')nickel(II)]

K.-L. Zhong

Abstract top

The title compound, [Ni(SO4)(C10H8N2)(C2H6O2)(H2O)]n, contains two crystallographically unique NiII atoms, each lying on a twofold rotation axis and having a slightly distorted octahedral environment. It is isotypic with the previously reported CuII analog [Zhong et al. (2011). Acta Cryst. C67, m62-m64]. One NiII atom is coordinated by two N atoms from two bridging 4,4'-bipyridine (4,4'-bipy) ligands, two O atoms from two sulfate ions and two aqua O atoms. The second NiII atom is surrounded by two N atoms from 4,4'-bipy ligands and four O atoms, two from bridging sulfate ions and from two ethane-1,2-diol ligands. The sulfate anion acts as a bridging ligand, linking adjacent NiII atoms, leading to the formation of linear ...Ni1-Ni2-Ni1-Ni2... chains along the a-axis direction. Adjacent chains are further bridged by 4,4'-bipy ligands, resulting in a two-dimensional layered polymer parallel to (001). In the crystal, the polymeric layers are linked by extensive O-H...O hydrogen-bonding interactions involving the O atoms of the water molecules and the ethane-1,2-diol molecules, resulting in a three-dimensional supramolecular network.

Comment top

Recently, the design and synthesis of metal-organic complexes or polymeric coordination networks belong to a rapidly developing field in coordination and supramolecular chemistry (Dietzel et al., 2005; Robin & Fromm, 2006; Sarma et al., 2009; Zhang et al., 2010). 4,4'-Bipyridine (4,4'-bipy) has been widely used as a bridging ligand to construct interesting complexes. Several Ni-(4,4'-bipy) complexes with perchlorate-anion, citraconate-anion, phthalate-anion and water-molecular ligands have been synthesized and characterized by X-ray diffraction (Yang et al., 2003; Kopf et al., 2005; Wang et al., 2006). The title nickel complex, [Ni2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, was obtained via a solvothermal reaction.

The single-crystal X-ray diffraction experiment revealed that the title compound is isostructural to the previously reported CuII analog (Zhong et al., 2011). It contains two crystallographically independent NiII centres. Atom Ni1 adopts a slightly distorted octahedral geometry. It is coordinated by two N atoms (N1 and N2) from two bridging 4,4'-bipy ligands occupying the axial positions, two O atoms (O1) from two bridging sulfate anions and two O atoms (O1W) from two water molecules occupying the equatorial sites (Fig. 1 & Table 1). The coordination environment of the Ni2 centre is very similar to that of Ni1, with ethane-1,2-diol ligands in place of the water ligands. Both Ni atoms and 4,4'-bipy ligands occupy special positions on crystallographic twofold axes. The Ni—N bond distances [2.072 (2)- 2.101 (2) Å], the Ni—O bond distances [2.0591 (15) - 2.0844 (14) Å] and the cis bond angles around NiII centres [87.20 (4) - 92.80 (4) °] are in agreement with those observed in the previously reported Ni-(4,4'-bipy) complex (Yang et al., 2003). The sulfate anion and 4,4'-bipy act as bridging ligands between two different Ni2+ ions, giving rise to the formation of linear ···Ni1—O—SO2—O—Ni2—O— SO2—O··· chains running along the a direction and ···Ni1-bipy-Ni2-bipy··· chains along the b direction, respectively. The ···M—O—SO2—O—M··· chains and the ···M—bipy—M··· chains are almost orthogonal, leading to a layered structure (Fig. 2). Intermolecular O1W—H5C···O6 and O5—H6···O1 hydrogen bonds help to further stabilize the layered structure (Table 2). In the crystal structure, extensive O—H···O hydrogen-bonding interactions between the water molecules, sulfate anions and 1,2-ethanediol molecules result in a three-dimensional supramolecular network.

Related literature top

For Ni-(4,4'-bipy) complexes with perchlorate, citraconate or phthalate anions and a water molecule as a second ligand, see: Yang et al. (2003); Kopf et al. (2005); Wang et al. (2006). For an isostructural [isotypic?] compound, see: Zhong et al. (2011). For background to coordination polymers, see: Dietzel et al. (2005); Robin & Fromm (2006); Sarma et al. (2009); Zhang et al. (2010).

Experimental top

Green block-shaped crystals of the title compound were obtained by a procedure similar to that described previously in Zhong et al. (2011) with NiSO4.7H2O instead of CuSO4.5H2O.

Refinement top

All non-hydrogen atoms were refined anisotropically. The aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of ethane-1,2-diol were geometrically placed and refined using a riding model [O—H = 0.82 Å and C—H = 0.97 Å; Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(C)]. The water H atoms were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond networks, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H···H distances [0.85 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. Then they were constrained to ride on their parent O atom [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. All H atoms have been omitted for clarity. Symmetry codes: (i) -x, y, -z + 3/2; (ii) -x + 1, y, -z + 3/2; (iii) x - 1, y, z; (iv) x + 1, y, z.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis. All H atoms have omitted for clarity. Symmetry codes: (v) -x + 1, y - 1, z; (vi) x - 1/2, y - 1/2, z; (viii) x - 1/2, y + 1/2, z.
Poly[aqua(µ2-4,4'-bipyridine-κ2N:N')(ethane-1,2-diol-κO)(µ2-sulfato-κ2O:O')nickel(II)] top
Crystal data top
[Ni(SO4)(C10H8N2)(C2H6O2)(H2O)]F(000) = 1616
Mr = 391.04Dx = 1.728 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6950 reflections
a = 11.022 (2) Åθ = 3.3–27.5°
b = 22.606 (5) ŵ = 1.47 mm1
c = 12.123 (2) ÅT = 223 K
β = 95.65 (3)°Block, green
V = 3005.9 (10) Å30.40 × 0.35 × 0.10 mm
Z = 8
Data collection top
Rigaku Mercury CCD
diffractometer
3420 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.024
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1411
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2329
Tmin = 0.743, Tmax = 1.000l = 1415
8555 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0501P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3420 reflectionsΔρmax = 0.56 e Å3
214 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Crystal data top
[Ni(SO4)(C10H8N2)(C2H6O2)(H2O)]V = 3005.9 (10) Å3
Mr = 391.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.022 (2) ŵ = 1.47 mm1
b = 22.606 (5) ÅT = 223 K
c = 12.123 (2) Å0.40 × 0.35 × 0.10 mm
β = 95.65 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3420 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2885 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 1.000Rint = 0.024
8555 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.56 e Å3
S = 1.06Δρmin = 0.41 e Å3
3420 reflectionsAbsolute structure: ?
214 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.379715 (14)0.25000.01501 (11)
Ni20.00000.378572 (13)0.25000.01544 (11)
S10.23450 (4)0.39830 (2)0.10920 (4)0.01777 (13)
O10.31124 (12)0.37951 (6)0.21319 (12)0.0197 (3)
O1W0.47576 (13)0.37522 (5)0.41787 (12)0.0234 (3)
H1WA0.43230.39570.45770.035*
H1WB0.54510.37720.45510.035*
O20.10883 (12)0.37748 (5)0.11907 (11)0.0194 (3)
O30.28195 (13)0.36860 (7)0.01488 (13)0.0289 (4)
O40.23754 (14)0.46204 (6)0.09809 (14)0.0360 (4)
O50.15466 (13)0.37609 (6)0.36000 (12)0.0233 (3)
H5B0.21690.37650.32820.028*
O60.30832 (13)0.43173 (6)0.52663 (13)0.0329 (4)
H6A0.29890.46630.54470.049*
N10.50000.28676 (10)0.25000.0188 (5)
N20.50000.47137 (10)0.25000.0182 (5)
N30.00000.28565 (10)0.25000.0213 (5)
N40.00000.47128 (10)0.25000.0185 (5)
C10.50000.16183 (12)0.25000.0188 (6)
C20.43554 (19)0.19444 (9)0.16563 (17)0.0243 (4)
H2A0.39120.17500.10720.029*
C30.43763 (19)0.25555 (9)0.16891 (18)0.0245 (4)
H3A0.39350.27620.11190.029*
C40.58066 (18)0.50219 (9)0.19796 (17)0.0237 (4)
H4A0.63830.48150.16220.028*
C50.58292 (18)0.56309 (8)0.19449 (17)0.0233 (4)
H5A0.63950.58250.15530.028*
C60.50000.59546 (12)0.25000.0200 (6)
C70.00000.16101 (12)0.25000.0215 (6)
C80.0906 (2)0.19347 (9)0.2077 (2)0.0426 (7)
H8A0.15400.17410.17740.051*
C90.0880 (2)0.25446 (10)0.2101 (2)0.0419 (6)
H9A0.15150.27490.18210.050*
C100.0662 (2)0.50282 (9)0.32806 (18)0.0294 (5)
H10A0.11260.48240.38390.035*
C110.0692 (2)0.56365 (9)0.33016 (18)0.0282 (5)
H11A0.11800.58310.38570.034*
C120.00000.59610 (12)0.25000.0187 (5)
C130.18041 (19)0.35033 (9)0.46738 (18)0.0274 (5)
H13A0.25020.32420.46750.033*
H13B0.11110.32710.48540.033*
C140.2067 (2)0.39774 (10)0.55251 (19)0.0317 (5)
H14A0.13600.42320.55420.038*
H14B0.22390.38000.62520.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01408 (18)0.01323 (17)0.0177 (2)0.0000.00165 (14)0.000
Ni20.01432 (18)0.01335 (18)0.0185 (2)0.0000.00093 (14)0.000
S10.0155 (2)0.0190 (2)0.0187 (2)0.00140 (18)0.00098 (17)0.00331 (18)
O10.0152 (7)0.0260 (7)0.0178 (7)0.0001 (5)0.0010 (6)0.0034 (5)
O1W0.0197 (7)0.0294 (8)0.0213 (8)0.0027 (6)0.0036 (6)0.0021 (6)
O20.0146 (6)0.0232 (7)0.0202 (7)0.0016 (5)0.0009 (6)0.0005 (5)
O30.0194 (7)0.0480 (10)0.0199 (8)0.0001 (6)0.0041 (6)0.0026 (6)
O40.0342 (8)0.0204 (7)0.0514 (11)0.0054 (6)0.0058 (8)0.0132 (7)
O50.0181 (7)0.0333 (8)0.0185 (7)0.0006 (6)0.0023 (6)0.0034 (6)
O60.0302 (8)0.0303 (8)0.0389 (9)0.0006 (6)0.0072 (7)0.0136 (7)
N10.0188 (11)0.0154 (11)0.0217 (12)0.0000.0005 (9)0.000
N20.0180 (11)0.0151 (10)0.0213 (12)0.0000.0012 (9)0.000
N30.0220 (11)0.0133 (10)0.0288 (13)0.0000.0041 (10)0.000
N40.0178 (11)0.0170 (11)0.0206 (12)0.0000.0021 (9)0.000
C10.0193 (13)0.0183 (13)0.0193 (14)0.0000.0043 (11)0.000
C20.0290 (10)0.0186 (9)0.0235 (11)0.0018 (8)0.0060 (9)0.0013 (8)
C30.0284 (10)0.0197 (10)0.0240 (11)0.0003 (9)0.0038 (9)0.0012 (8)
C40.0241 (10)0.0215 (10)0.0259 (11)0.0009 (8)0.0050 (9)0.0019 (8)
C50.0241 (10)0.0202 (9)0.0268 (11)0.0009 (8)0.0076 (9)0.0021 (8)
C60.0220 (13)0.0174 (13)0.0201 (14)0.0000.0003 (11)0.000
C70.0230 (14)0.0190 (13)0.0226 (15)0.0000.0021 (11)0.000
C80.0407 (13)0.0191 (10)0.0735 (19)0.0030 (10)0.0328 (14)0.0012 (12)
C90.0388 (13)0.0214 (10)0.0711 (19)0.0001 (10)0.0327 (13)0.0020 (12)
C100.0376 (12)0.0189 (10)0.0287 (12)0.0023 (9)0.0120 (10)0.0003 (9)
C110.0351 (12)0.0214 (10)0.0254 (11)0.0019 (9)0.0106 (9)0.0030 (8)
C120.0191 (13)0.0158 (12)0.0217 (14)0.0000.0041 (11)0.000
C130.0284 (11)0.0268 (11)0.0265 (11)0.0012 (9)0.0003 (9)0.0094 (9)
C140.0303 (11)0.0416 (13)0.0240 (11)0.0020 (10)0.0066 (9)0.0008 (10)
Geometric parameters (Å, º) top
Ni1—N22.072 (2)C1—C2i1.397 (2)
Ni1—O1W2.0809 (15)C1—C21.397 (2)
Ni1—O1Wi2.0809 (15)C1—C12iii1.486 (4)
Ni1—O12.0844 (14)C2—C31.382 (3)
Ni1—O1i2.0844 (14)C2—H2A0.9300
Ni1—N12.101 (2)C3—H3A0.9300
Ni2—O52.0591 (15)C4—C51.378 (3)
Ni2—O5ii2.0591 (15)C4—H4A0.9300
Ni2—O2ii2.0817 (15)C5—C61.395 (2)
Ni2—O22.0817 (15)C5—H5A0.9300
Ni2—N42.096 (2)C6—C5i1.395 (2)
Ni2—N32.101 (2)C6—C7iv1.482 (4)
S1—O41.4480 (15)C7—C81.378 (3)
S1—O31.4660 (16)C7—C8ii1.378 (3)
S1—O21.4788 (14)C7—C6v1.482 (4)
S1—O11.5084 (15)C8—C91.379 (3)
O1W—H1WA0.8500C8—H8A0.9300
O1W—H1WB0.8500C9—H9A0.9300
O5—C131.429 (2)C10—C111.376 (3)
O5—H5B0.8200C10—H10A0.9300
O6—C141.419 (3)C11—C121.385 (2)
O6—H6A0.8200C11—H11A0.9300
N1—C31.343 (2)C12—C11ii1.385 (2)
N1—C3i1.343 (2)C12—C1vi1.486 (4)
N2—C4i1.336 (2)C13—C141.496 (3)
N2—C41.336 (2)C13—H13A0.9700
N3—C9ii1.328 (3)C13—H13B0.9700
N3—C91.328 (3)C14—H14A0.9700
N4—C101.342 (2)C14—H14B0.9700
N4—C10ii1.342 (2)
N2—Ni1—O1W92.80 (4)C9—N3—Ni2122.06 (13)
N2—Ni1—O1Wi92.80 (4)C10—N4—C10ii115.8 (2)
O1W—Ni1—O1Wi174.41 (7)C10—N4—Ni2122.10 (12)
N2—Ni1—O190.13 (4)C10ii—N4—Ni2122.10 (12)
O1W—Ni1—O189.30 (6)C2i—C1—C2116.3 (2)
O1Wi—Ni1—O190.69 (6)C2i—C1—C12iii121.85 (12)
N2—Ni1—O1i90.13 (4)C2—C1—C12iii121.85 (12)
O1W—Ni1—O1i90.69 (6)C3—C2—C1120.03 (18)
O1Wi—Ni1—O1i89.30 (6)C3—C2—H2A120.0
O1—Ni1—O1i179.74 (7)C1—C2—H2A120.0
N2—Ni1—N1180.0N1—C3—C2123.50 (18)
O1W—Ni1—N187.20 (4)N1—C3—H3A118.2
O1Wi—Ni1—N187.20 (4)C2—C3—H3A118.2
O1—Ni1—N189.87 (4)N2—C4—C5123.4 (2)
O1i—Ni1—N189.87 (4)N2—C4—H4A118.3
O5—Ni2—O5ii176.88 (7)C5—C4—H4A118.3
O5—Ni2—O2ii90.48 (6)C4—C5—C6119.7 (2)
O5ii—Ni2—O2ii89.49 (6)C4—C5—H5A120.2
O5—Ni2—O289.49 (6)C6—C5—H5A120.2
O5ii—Ni2—O290.48 (6)C5i—C6—C5116.7 (3)
O2ii—Ni2—O2178.64 (7)C5i—C6—C7iv121.66 (13)
O5—Ni2—N491.56 (4)C5—C6—C7iv121.66 (13)
O5ii—Ni2—N491.56 (4)C8—C7—C8ii115.6 (3)
O2ii—Ni2—N490.68 (3)C8—C7—C6v122.18 (13)
O2—Ni2—N490.68 (3)C8ii—C7—C6v122.18 (13)
O5—Ni2—N388.44 (4)C7—C8—C9120.5 (2)
O5ii—Ni2—N388.44 (4)C7—C8—H8A119.8
O2ii—Ni2—N389.32 (3)C9—C8—H8A119.8
O2—Ni2—N389.32 (3)N3—C9—C8123.7 (2)
N4—Ni2—N3180.0N3—C9—H9A118.1
O4—S1—O3111.71 (10)C8—C9—H9A118.1
O4—S1—O2110.77 (8)N4—C10—C11123.70 (19)
O3—S1—O2109.04 (9)N4—C10—H10A118.2
O4—S1—O1109.99 (8)C11—C10—H10A118.2
O3—S1—O1108.01 (8)C10—C11—C12120.37 (19)
O2—S1—O1107.18 (8)C10—C11—H11A119.8
S1—O1—Ni1130.10 (9)C12—C11—H11A119.8
Ni1—O1W—H1WA131.5C11ii—C12—C11116.1 (3)
Ni1—O1W—H1WB108.7C11ii—C12—C1vi121.97 (13)
H1WA—O1W—H1WB101.4C11—C12—C1vi121.97 (13)
S1—O2—Ni2132.26 (9)O5—C13—C14110.12 (17)
C13—O5—Ni2132.74 (12)O5—C13—H13A109.6
C13—O5—H5B109.5C14—C13—H13A109.6
Ni2—O5—H5B111.9O5—C13—H13B109.6
C14—O6—H6A109.5C14—C13—H13B109.6
C3—N1—C3i116.6 (2)H13A—C13—H13B108.2
C3—N1—Ni1121.69 (12)O6—C14—C13109.80 (18)
C3i—N1—Ni1121.69 (12)O6—C14—H14A109.7
C4i—N2—C4117.1 (2)C13—C14—H14A109.7
C4i—N2—Ni1121.44 (12)O6—C14—H14B109.7
C4—N2—Ni1121.44 (12)C13—C14—H14B109.7
C9ii—N3—C9115.9 (3)H14A—C14—H14B108.2
C9ii—N3—Ni2122.06 (13)
O4—S1—O1—Ni170.98 (12)O2ii—Ni2—N3—C9ii24.04 (16)
O3—S1—O1—Ni151.16 (12)O2—Ni2—N3—C9ii155.96 (16)
O2—S1—O1—Ni1168.52 (9)O5—Ni2—N3—C965.47 (16)
N2—Ni1—O1—S168.28 (10)O5ii—Ni2—N3—C9114.53 (16)
O1W—Ni1—O1—S1161.08 (10)O2ii—Ni2—N3—C9155.96 (16)
O1Wi—Ni1—O1—S124.52 (10)O2—Ni2—N3—C924.04 (16)
N1—Ni1—O1—S1111.72 (10)O5—Ni2—N4—C1015.81 (13)
O4—S1—O2—Ni276.72 (13)O5ii—Ni2—N4—C10164.19 (13)
O3—S1—O2—Ni2159.96 (10)O2ii—Ni2—N4—C1074.68 (13)
O1—S1—O2—Ni243.28 (12)O2—Ni2—N4—C10105.32 (13)
O5—Ni2—O2—S127.71 (11)O5—Ni2—N4—C10ii164.19 (13)
O5ii—Ni2—O2—S1155.42 (10)O5ii—Ni2—N4—C10ii15.81 (13)
N4—Ni2—O2—S163.85 (10)O2ii—Ni2—N4—C10ii105.32 (13)
N3—Ni2—O2—S1116.15 (10)O2—Ni2—N4—C10ii74.68 (13)
O2ii—Ni2—O5—C1331.31 (16)C2i—C1—C2—C30.18 (15)
O2—Ni2—O5—C13147.33 (16)C12iii—C1—C2—C3179.82 (15)
N4—Ni2—O5—C13122.01 (16)C3i—N1—C3—C20.20 (16)
N3—Ni2—O5—C1357.99 (16)Ni1—N1—C3—C2179.80 (16)
O1W—Ni1—N1—C3135.88 (12)C1—C2—C3—N10.4 (3)
O1Wi—Ni1—N1—C344.12 (12)C4i—N2—C4—C50.94 (14)
O1—Ni1—N1—C346.58 (12)Ni1—N2—C4—C5179.06 (14)
O1i—Ni1—N1—C3133.42 (12)N2—C4—C5—C61.9 (3)
O1W—Ni1—N1—C3i44.12 (12)C4—C5—C6—C5i0.87 (13)
O1Wi—Ni1—N1—C3i135.88 (12)C4—C5—C6—C7iv179.13 (13)
O1—Ni1—N1—C3i133.42 (12)C8ii—C7—C8—C90.6 (2)
O1i—Ni1—N1—C3i46.58 (12)C6v—C7—C8—C9179.4 (2)
O1W—Ni1—N2—C4i43.57 (11)C9ii—N3—C9—C80.6 (2)
O1Wi—Ni1—N2—C4i136.43 (11)Ni2—N3—C9—C8179.4 (2)
O1—Ni1—N2—C4i45.73 (11)C7—C8—C9—N31.2 (4)
O1i—Ni1—N2—C4i134.27 (11)C10ii—N4—C10—C110.58 (17)
O1W—Ni1—N2—C4136.43 (11)Ni2—N4—C10—C11179.42 (17)
O1Wi—Ni1—N2—C443.57 (11)N4—C10—C11—C121.2 (3)
O1—Ni1—N2—C4134.27 (11)C10—C11—C12—C11ii0.54 (16)
O1i—Ni1—N2—C445.73 (11)C10—C11—C12—C1vi179.46 (16)
O5—Ni2—N3—C9ii114.53 (16)Ni2—O5—C13—C14114.44 (17)
O5ii—Ni2—N3—C9ii65.47 (16)O5—C13—C14—O659.5 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z; (v) x1/2, y1/2, z; (vi) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4vii0.821.892.694 (2)165
O5—H5B···O10.821.822.599 (2)158
O1W—H1WA···O60.851.862.693 (2)167
O1W—H1WB···O3i0.851.912.718 (2)157
Symmetry codes: (i) x+1, y, z+1/2; (vii) x, y+1, z+1/2.
Selected bond lengths (Å) top
Ni1—N22.072 (2)Ni2—O52.0591 (15)
Ni1—O1W2.0809 (15)Ni2—O22.0817 (15)
Ni1—O12.0844 (14)Ni2—N42.096 (2)
Ni1—N12.101 (2)Ni2—N32.101 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.821.892.694 (2)164.6
O5—H5B···O10.821.822.599 (2)158.2
O1W—H1WA···O60.851.862.693 (2)167.1
O1W—H1WB···O3ii0.851.912.718 (2)157.3
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1/2.
Acknowledgements top

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013–10).

references
References top

Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483–1492.

Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.

Kopf, A. L., Maggard, P. A., Stern, C. L. & Poeppelmeier, K. R. (2005). Acta Cryst. C61, m165–m168.

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.

Sarma, D., Ramanujachary, K. V., Lofland, S. E., Magdaleno, T. & Natarajan, S. (2009). Inorg. Chem. 48, 11660–11676.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X.-L., Qin, C. & Wang, E.-B. (2006). Cryst. Growth Des. 6, 439–443.

Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507–m509.

Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.

Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62–m64.