organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(E)-[4-Bromo-2-(tri­fluoro­meth­­oxy)phen­yl]imino­meth­yl}naphthalen-2-ol

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and cDepartment of Medical Services and Techniques, Vocational School of Health Services, Giresun University, TR-28200 Giresun, Turkey
*Correspondence e-mail: gokhan.alpaslan@giresun.edu.tr

(Received 25 February 2013; accepted 11 March 2013; online 16 March 2013)

The title compound, C18H11BrF3NO2, crystallizes in the phenol–imine tautomeric form, with a strong intra­molecular O—H⋯N hydrogen bond. The dihedral angle between the naphthalene ring system and the benzene ring is 28.54 (10)°.

Related literature

For biological properties of Schiff bases, see: Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]); Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). In Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]). For Schiff base tautom­erism, see: Hökelek et al. (2000[Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]); Tüfekçi et al. (2009[Tüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704.]). For related strucures, see: Bingöl Alpaslan et al. (2010[Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.]); Soydemir et al. (2011[Soydemir, E., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2011). Acta Cryst. E67, o599-o600.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11BrF3NO2

  • Mr = 410.19

  • Monoclinic, P 21 /c

  • a = 4.5315 (3) Å

  • b = 16.3228 (7) Å

  • c = 21.7622 (12) Å

  • β = 93.025 (4)°

  • V = 1607.44 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 296 K

  • 0.73 × 0.32 × 0.08 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.176, Tmax = 0.772

  • 17993 measured reflections

  • 3160 independent reflections

  • 1932 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.092

  • S = 1.02

  • 3160 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (5) 1.77 (6) 2.551 (5) 151 (5)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substance (Layer 1963; Ingold 1969; Barton & Ollis, 1979). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Tüfekçi et al., 2009) tautomeric forms. The present X-ray investigation shows that the title compound is a Schiff base and exists in the phenol-imine form in the solid-state. An ORTEP-3 (Farrugia, 2012) plot of the molecule of (I) is shown in Fig.1. The C2-O1 bond length of 1.335 (5) Å indicates single-bond character while the N1-C11 bond length of 1.284 (4) Å indicates double-bond character.These bond distances are comparable with those of compounds previously reported as phenol-imine (Bingöl Alpaslan et al., 2010; Soydemir et al., 2011). The dihedral angle between the naphthalene ring system and the benzene ring is 28.54 (10)°.

Related literature top

For biological properties of Schiff bases, see: Layer (1963); Ingold (1969); Barton & Ollis (1979). For Schiff base tautomerism, see: Hökelek et al. (2000); Tüfekçi et al. (2009). For related strucures, see: Bingöl Alpaslan et al. (2010); Soydemir et al. (2011).

Experimental top

(E)-1-[(4-bromo-2-(trifluoromethoxy)phenylimino)methyl]naphthalen-2-ol was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (17,22 mg, 0,1 mmol) in ethanol (20 ml) and a solution containing 4-bromo-2-(trifluoromethoxy)aniline (25,60 mg, 0,1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 5 hour under reflux. Single crystals of the title compound for x-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 68%; m.p. 376 - 378 K).

Refinement top

The H atom bonded to O1 was refined freely. All other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
1-{(E)-[4-Bromo-2-(trifluoromethoxy)phenyl]iminomethyl}naphthalen-2-ol top
Crystal data top
C18H11BrF3NO2F(000) = 816
Mr = 410.19Dx = 1.695 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16693 reflections
a = 4.5315 (3) Åθ = 1.6–27.3°
b = 16.3228 (7) ŵ = 2.60 mm1
c = 21.7622 (12) ÅT = 296 K
β = 93.025 (4)°Needle, yellow
V = 1607.44 (15) Å30.73 × 0.32 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
3160 independent reflections
Radiation source: fine-focus sealed tube1932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.6°
ω scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2020
Tmin = 0.176, Tmax = 0.772l = 2626
17993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
3160 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H11BrF3NO2V = 1607.44 (15) Å3
Mr = 410.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5315 (3) ŵ = 2.60 mm1
b = 16.3228 (7) ÅT = 296 K
c = 21.7622 (12) Å0.73 × 0.32 × 0.08 mm
β = 93.025 (4)°
Data collection top
Stoe IPDS-II
diffractometer
3160 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1932 reflections with I > 2σ(I)
Tmin = 0.176, Tmax = 0.772Rint = 0.080
17993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.35 e Å3
3160 reflectionsΔρmin = 0.20 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2279 (8)0.2342 (2)0.35440 (16)0.0573 (9)
C21.2003 (8)0.3194 (3)0.35626 (18)0.0655 (10)
C31.3639 (10)0.3657 (3)0.4008 (2)0.0776 (11)
H31.34280.42230.40180.093*
C41.5515 (9)0.3281 (3)0.44213 (19)0.0765 (11)
H41.65870.35960.47100.092*
C51.5892 (8)0.2423 (3)0.44265 (17)0.0657 (10)
C61.7837 (9)0.2042 (3)0.48585 (19)0.0812 (12)
H61.88930.23620.51470.097*
C71.8217 (10)0.1228 (4)0.4867 (2)0.0936 (14)
H71.95230.09860.51570.112*
C81.6626 (11)0.0748 (3)0.4434 (2)0.0923 (14)
H81.68670.01820.44410.111*
C91.4735 (9)0.1092 (3)0.40055 (19)0.0777 (11)
H91.37180.07590.37200.093*
C101.4281 (8)0.1944 (2)0.39847 (17)0.0602 (9)
C111.0578 (8)0.1889 (2)0.30832 (17)0.0622 (9)
H111.07350.13210.30780.075*
C120.7139 (8)0.1804 (2)0.22366 (16)0.0597 (9)
C130.6122 (9)0.1007 (3)0.23012 (17)0.0684 (10)
H130.66610.07160.26570.082*
C140.4340 (8)0.0637 (3)0.18521 (17)0.0693 (10)
H140.36680.01040.19060.083*
C150.3558 (8)0.1062 (2)0.13217 (17)0.0632 (10)
C160.4535 (8)0.1847 (2)0.12336 (17)0.0648 (10)
H160.40100.21290.08730.078*
C170.6300 (8)0.2206 (2)0.16873 (18)0.0609 (9)
C180.5876 (11)0.3632 (3)0.1640 (2)0.0827 (12)
Br10.11465 (10)0.05593 (3)0.06926 (2)0.08462 (18)
F10.4514 (8)0.36567 (18)0.21522 (15)0.1282 (11)
F20.7514 (7)0.42801 (17)0.16068 (19)0.1371 (12)
F30.3769 (6)0.36943 (18)0.11946 (14)0.1162 (9)
N10.8849 (7)0.22428 (19)0.26788 (14)0.0653 (8)
O11.0213 (7)0.36180 (19)0.31728 (16)0.0838 (9)
O20.7558 (6)0.29790 (17)0.15836 (12)0.0725 (7)
H10.963 (11)0.327 (3)0.290 (2)0.12 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (2)0.055 (2)0.055 (2)0.0034 (18)0.0068 (18)0.0039 (17)
C20.069 (2)0.063 (3)0.065 (3)0.002 (2)0.009 (2)0.004 (2)
C30.089 (3)0.058 (3)0.086 (3)0.003 (2)0.007 (2)0.015 (2)
C40.080 (3)0.077 (3)0.072 (3)0.012 (2)0.002 (2)0.018 (2)
C50.064 (2)0.073 (3)0.060 (2)0.003 (2)0.0049 (19)0.008 (2)
C60.076 (3)0.095 (4)0.071 (3)0.004 (3)0.007 (2)0.011 (2)
C70.093 (3)0.109 (4)0.077 (3)0.021 (3)0.020 (2)0.000 (3)
C80.117 (4)0.070 (3)0.088 (3)0.015 (3)0.008 (3)0.007 (3)
C90.099 (3)0.063 (3)0.069 (3)0.006 (2)0.010 (2)0.006 (2)
C100.063 (2)0.064 (3)0.054 (2)0.0020 (19)0.0071 (17)0.0050 (18)
C110.070 (2)0.059 (3)0.058 (2)0.0022 (19)0.0080 (19)0.0040 (19)
C120.063 (2)0.062 (3)0.054 (2)0.0051 (19)0.0022 (18)0.0035 (19)
C130.090 (3)0.064 (3)0.051 (2)0.005 (2)0.004 (2)0.0055 (19)
C140.082 (2)0.059 (2)0.066 (2)0.008 (2)0.0015 (19)0.000 (2)
C150.069 (2)0.064 (3)0.056 (2)0.0049 (19)0.0028 (18)0.0029 (19)
C160.069 (2)0.065 (3)0.059 (2)0.004 (2)0.0098 (18)0.007 (2)
C170.062 (2)0.052 (2)0.069 (2)0.0020 (18)0.0004 (19)0.0051 (19)
C180.086 (3)0.064 (3)0.097 (4)0.004 (3)0.001 (3)0.017 (3)
Br10.0931 (3)0.0795 (3)0.0783 (3)0.0037 (3)0.02406 (19)0.0046 (3)
F10.157 (3)0.111 (2)0.120 (2)0.0348 (19)0.034 (2)0.0057 (19)
F20.119 (2)0.0595 (18)0.230 (4)0.0058 (17)0.011 (2)0.026 (2)
F30.1036 (19)0.107 (2)0.134 (2)0.0219 (16)0.0291 (17)0.0330 (18)
N10.0728 (19)0.063 (2)0.0594 (19)0.0005 (16)0.0006 (16)0.0015 (16)
O10.103 (2)0.063 (2)0.084 (2)0.0087 (17)0.0090 (18)0.0022 (17)
O20.0727 (16)0.0599 (18)0.0845 (19)0.0017 (15)0.0006 (14)0.0078 (14)
Geometric parameters (Å, º) top
C1—C21.397 (5)C11—N11.284 (4)
C1—C111.437 (5)C11—H110.9300
C1—C101.440 (5)C12—C131.390 (5)
C2—O11.335 (5)C12—C171.399 (5)
C2—C31.409 (6)C12—N11.401 (5)
C3—C41.352 (6)C13—C141.375 (5)
C3—H30.9300C13—H130.9300
C4—C51.411 (6)C14—C151.377 (5)
C4—H40.9300C14—H140.9300
C5—C61.400 (6)C15—C161.372 (5)
C5—C101.412 (5)C15—Br11.893 (4)
C6—C71.339 (6)C16—C171.369 (5)
C6—H60.9300C16—H160.9300
C7—C81.396 (6)C17—O21.408 (4)
C7—H70.9300C18—F21.297 (5)
C8—C91.356 (6)C18—F11.302 (5)
C8—H80.9300C18—O21.320 (5)
C9—C101.406 (5)C18—F31.329 (5)
C9—H90.9300O1—H10.85 (5)
C2—C1—C11119.1 (3)N1—C11—C1122.2 (4)
C2—C1—C10118.9 (3)N1—C11—H11118.9
C11—C1—C10121.9 (3)C1—C11—H11118.9
O1—C2—C1123.3 (4)C13—C12—C17116.7 (3)
O1—C2—C3116.1 (4)C13—C12—N1125.7 (3)
C1—C2—C3120.6 (4)C17—C12—N1117.5 (4)
C4—C3—C2120.3 (4)C14—C13—C12121.7 (4)
C4—C3—H3119.9C14—C13—H13119.2
C2—C3—H3119.9C12—C13—H13119.2
C3—C4—C5121.9 (4)C13—C14—C15119.3 (4)
C3—C4—H4119.1C13—C14—H14120.3
C5—C4—H4119.1C15—C14—H14120.3
C6—C5—C4121.2 (4)C16—C15—C14121.2 (4)
C6—C5—C10119.7 (4)C16—C15—Br1118.8 (3)
C4—C5—C10119.0 (4)C14—C15—Br1120.0 (3)
C7—C6—C5121.7 (4)C17—C16—C15118.7 (4)
C7—C6—H6119.1C17—C16—H16120.7
C5—C6—H6119.1C15—C16—H16120.7
C6—C7—C8119.1 (4)C16—C17—C12122.5 (4)
C6—C7—H7120.5C16—C17—O2119.6 (3)
C8—C7—H7120.5C12—C17—O2117.6 (3)
C9—C8—C7121.1 (5)F2—C18—F1108.7 (5)
C9—C8—H8119.5F2—C18—O2108.6 (4)
C7—C8—H8119.5F1—C18—O2114.1 (4)
C8—C9—C10121.3 (4)F2—C18—F3106.7 (4)
C8—C9—H9119.4F1—C18—F3105.5 (4)
C10—C9—H9119.4O2—C18—F3113.0 (4)
C9—C10—C5117.1 (4)C11—N1—C12122.4 (3)
C9—C10—C1123.6 (4)C2—O1—H1104 (4)
C5—C10—C1119.3 (4)C18—O2—C17117.9 (3)
C11—C1—C2—O10.3 (5)C2—C1—C11—N11.4 (5)
C10—C1—C2—O1179.8 (3)C10—C1—C11—N1178.1 (3)
C11—C1—C2—C3180.0 (3)C17—C12—C13—C141.0 (5)
C10—C1—C2—C30.5 (5)N1—C12—C13—C14177.0 (3)
O1—C2—C3—C4179.8 (4)C12—C13—C14—C150.6 (6)
C1—C2—C3—C40.5 (6)C13—C14—C15—C160.2 (5)
C2—C3—C4—C50.5 (6)C13—C14—C15—Br1179.2 (3)
C3—C4—C5—C6179.8 (4)C14—C15—C16—C170.5 (5)
C3—C4—C5—C100.5 (6)Br1—C15—C16—C17179.5 (3)
C4—C5—C6—C7179.9 (4)C15—C16—C17—C120.1 (5)
C10—C5—C6—C70.1 (6)C15—C16—C17—O2174.0 (3)
C5—C6—C7—C80.2 (7)C13—C12—C17—C160.8 (5)
C6—C7—C8—C90.6 (7)N1—C12—C17—C16177.4 (3)
C7—C8—C9—C100.7 (7)C13—C12—C17—O2173.3 (3)
C8—C9—C10—C50.4 (6)N1—C12—C17—O28.4 (5)
C8—C9—C10—C1179.3 (4)C1—C11—N1—C12178.6 (3)
C6—C5—C10—C90.0 (5)C13—C12—N1—C1127.1 (5)
C4—C5—C10—C9179.8 (4)C17—C12—N1—C11154.8 (3)
C6—C5—C10—C1179.8 (3)F2—C18—O2—C17171.8 (4)
C4—C5—C10—C10.5 (5)F1—C18—O2—C1750.4 (6)
C2—C1—C10—C9179.8 (3)F3—C18—O2—C1770.0 (5)
C11—C1—C10—C90.3 (5)C16—C17—O2—C1879.8 (5)
C2—C1—C10—C50.5 (5)C12—C17—O2—C18105.9 (4)
C11—C1—C10—C5180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (5)1.77 (6)2.551 (5)151 (5)

Experimental details

Crystal data
Chemical formulaC18H11BrF3NO2
Mr410.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.5315 (3), 16.3228 (7), 21.7622 (12)
β (°) 93.025 (4)
V3)1607.44 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.73 × 0.32 × 0.08
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.176, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
17993, 3160, 1932
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.092, 1.02
No. of reflections3160
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (5)1.77 (6)2.551 (5)151 (5)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBarton, D. & Ollis, W. D. (1979). In Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationBingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationIngold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoydemir, E., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2011). Acta Cryst. E67, o599–o600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds