organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydro­naphthalen-2-yl)ethan-1-one: a precursor for phase-I metabolite of AHTN

aBAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: franziska.emmerling@bam.de

(Received 11 March 2013; accepted 12 March 2013; online 16 March 2013)

The title compound, C18H25BrO, crystallized as a racemate with four independent mol­ecules in the asymmetric unit. In the crystal, three of these four mol­ecules are linked via C—Br⋯Br—C halogen bonds [Br⋯Br = 3.662 (2) and 3.652 (2) Å], forming dimers.

Related literature

For the crystal structure of the starting material, see: De Ridder et al. (1990[De Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200-2202.]). For the next synthesis step for the title compound (aryl halide to phenol), see: Tlili et al. (2009[Tlili, A., Xia, N., Monnier, F. & Taillefer, M. (2009). Angew. Chem. Int. Ed. 48, 8725-8728.]). For possible abiotic and biotic transformation products of AHTN and HHCB, see: Biselli et al. (2004[Biselli, S., Gatermann, R., Kallenborn, R., Sydnes, L. K. & Hühnerfuss, H. (2004). The Handbook of Environmental Chemistry, Vol. 3, pp. 89-211. Berlin: Springer.]); Martin et al. (2007[Martin, C., Moeder, M., Daniel, X., Krauss, G. & Schlosser, D. (2007). Environ. Sci. Technol. 41, 5395-5402.]); Kuhlich et al. (2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]); Kuhlich, Emmerling et al. (2011[Kuhlich, P., Emmerling, F., Piechotta, C. & Nehls, I. (2011). Acta Cryst. E67, o485.]); Kuhlich, Göstl et al. (2011[Kuhlich, P., Göstl, R., Teichert, P., Piechotta, C. & Nehls, I. (2011). Anal. Bioanal. Chem. 399, 3579-3588.]); Faust et al. (2011[Faust, R., Nauroozi, D., Bruhn, C., Koch, B., Kuhlich, P., Piechotta, C. & Nehls, I. (2011). Acta Cryst. E67, o1462-o1463.]). For model biotic conversion by liver microsomes, see: Esslinger et al. (2011[Esslinger, S., Becker, R., Maul, R. & Nehls, I. (2011). Environ. Sci. Technol. 45, 3938-3944.]). For environmental occurrence of AHTN, see: Heberer (2003[Heberer, T. (2003). Acta Hydroch. Hydrob. 30, 227-243.]). For information on type I and type II halogen inter­actions, see: Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H25BrO

  • Mr = 337.28

  • Monoclinic, C 2/c

  • a = 35.007 (8) Å

  • b = 19.760 (5) Å

  • c = 24.826 (10) Å

  • β = 127.681 (6)°

  • V = 13591 (7) Å3

  • Z = 32

  • Mo Kα radiation

  • μ = 2.42 mm−1

  • T = 293 K

  • 0.25 × 0.18 × 0.1 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.96

  • 35989 measured reflections

  • 11040 independent reflections

  • 5702 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.147

  • S = 1.17

  • 11040 reflections

  • 737 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is the product of an electrophilic aromatic substitution by dibromoisocyanuric acid with anhydrous sulfuric acid. This aryl bromide shall serve as precursor for the introduction of an aromatic hydroxyl group in meta position towards the keto-function of AHTN (Tlili et al., 2009).

6-acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN) and 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran (HHCB) are the predominant representatives of polycyclic musks (Fig. 1). They are widely used fragrances in cosmetics, perfumes, and cleaning products. Produced in ton-scale, they can be found in many different environmental compartments, e.g. surface water (Heberer, 2003). Recently, our group investigated anthropogenic transformation pathways of AHTN and HHCB (Kuhlich, Göstl et al., 2011) by disinfection and reported crystal structures of other possible abiotic transformations of AHTN like AHTN-COOH (Kuhlich et al., 2010), AHTN-OH (Faust et al., 2011), and AHTN-COOMe (Kuhlich, Emmerling et al., 2011). The solid state structure of AHTN itself was reported by De Ridder et al. (1990).

In literature contrary opinions exist about possible positions for hydroxylation of AHTN. Biselli et al. (2004) suggested aromatic hydroxylation for the structure related HHCB-Lactone, whereas Martin et al. (2007) did not find hints for their existence by examining the influence of two mitosporic aquatic fungi towards AHTN (supplementary part of that paper). However, Biselli et al. did not mention if aromatic hydroxylation occurs via an abiotic or biotic pathway. The discussed positions of aromatic hydroxylation are indicated using arrows in Fig. 1.

Our group examined the microsomal conversion of AHTN by human liver microsomes and found three possible metabolites. A various number of conceivable metabolites were synthesized to get references in retention times and fragmentation patterns in comparison to the achieved compounds from incubation using human liver microsomes. A modified protocol for microsomal conversion using rat liver can be found in the literature (Esslinger et al., 2011).

The compound crystallizes in the monoclinic space group C2/c. The molecular structure of the compound and the atom-labeling scheme are displayed in Fig. 2. Four independent molecules can be found in the asymmetric unit. Two of them (molecule A and D) show a slight disorder which can be deduced from the shape of the ellipsoides. A general puckering analysis of the non-aromatic ring according to Cremer and Pople (Cremer & Pople, 1975) led to a half-chair conformation. The rings (molecule A: C7—C12, molecule B: C25—C30, molecule C: C43—C48, molecule D: C61—C66. For molecule A, see Fig. 2, molecules B—D not shown in detail) have a puckering amplitude (Q) of 0.431 (7) Å (molecule A), 0.447 (7) Å (molecule B), 0.354 (9) Å (molecule C), and 0.301 (10) Å (molecule D), respectively. The maximum deviation from planarity is 0.282 (7) for C10 (molecule A), 0.288 (7) Å for C28 (molecule B), 0.238 (10) Å for C47 (molecule C), and -0.199 (11) Å for C64 (molecule D), respectively.

Three of the four bromine atoms form C—Br···Br—C halogen bonds to adjacent molecules along the [0 0 1] direction (see dashed green bonds in Fig. 3). Between two of the bromine atoms (Br2, Br3) a type I halogen interactions can be observed (Pedireddi et al., 1994). These halogen···halogen contacts C—X···X—C are defined as type I if the C—X···X angle α1 is equal or nearly equal to the X···X—C angle α2 and close to 180° (α1,2=140.65°, dBr—Br=3.662 (2) A). Type I contacts arise as a result of close packing about an inversion center. The other bromine atoms (Br1, Br4) are engaged in type II halogen···halogen contacts, where α1 is equal or nearly equal to 180° and α2 is equal or nearly equal to 90° (α1=168.04°, α2= 85.54°, dBr—Br=3.652 (2) A).

Related literature top

For the crystal structure of the starting material, see: De Ridder et al. (1990). For the next synthesis step for the title compound (aryl halide to phenol), see: Tlili et al. (2009). For possible abiotic and biotic transformation products of AHTN and HHCB, see: Biselli et al. (2004); Martin et al. (2007); Kuhlich et al. (2010); Kuhlich, Emmerling et al. (2011); Kuhlich, Göstl et al. (2011); Faust et al. (2011). For model biotic conversion by liver microsomes, see: Esslinger et al. (2011). For environmental occurrence of AHTN, see: Heberer (2003). For information on type I and type II halogen interactions, see: Pedireddi et al. (1994). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of AHTN (5.17 g, 20 mmol) in 20 ml chloroform was cooled to 273 K in a 50 ml brown and round bottom flask. Over a time period of 72 h, each day 20 mg of dibromoisocyanuric acid and 2 ml of anhydrous sulfuric acid were added. The reaction mixture was quenched by carefully adding it to 50 ml of brine. The mixture was extracted with dichloromethane (3 x 30 ml). The organic extracts were combined, dried over anhydrous sodium sulfate and filtered. After evaporation of the solvent under vacuum, the residue was cleaned by column chromatography (silica gel; dichloromethane). The brown oil dissolved in methanol gave brown crystals overnight (0.8 g, 2.4 mmol, yield: 12%).

1H-NMR (500 MHz; CD3OD; TMS): δ [p.p.m.] = 7.53 (1H, s), 2.55 (3H, s), 2.43 (3H, s), 1.86 (1H, ddq, JH,H'=2.3 Hz, JH,H''=13.4 Hz, JH,Me=6.7 Hz), 1.66 (1H, dd, 2J=13.5 Hz, 3J=13.4 Hz), 1.64 (3H, s), 1.44 (3H, s), 1.37 (1H, dd, 2J=13. Hz, 3J=2.3 Hz), 1.36 (3H, s), 1.26 (3H, s), and 1.05 (3H, d, J=6.7 Hz); 13C-NMR (125 MHz, CD3OD, TMS): δ [p.p.m.] = 206.0, 149.3, 147.9, 141.1, 136.0, 130.6, 127.2, 43.7, 41.6, 39.4, 36.9, 33.8, 32.3, 30.8, 27.7, 22.3, 19.2, and 17.7. (+)-ESI/MS: 337.2 (62) [M(79Br)+H+], 339.2 (63) [M(81Br)+H+], 359.2 (100) [M(79Br)+Na+], 361.2 (95) [M(81Br)+Na+].

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, and 0.97 Å, Uiso = 1.2Ueq (C) for CH2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Line draws of polycyclic musks AHTN (left) and HHCB (middle) as well as line draw of HHCB-Lactone (right). Arrows indicate controversial positions for further hydroxylation.
[Figure 2] Fig. 2. : ORTEP representation of the title compound (molecule A) with atomic labeling shown with 30% probability displacement ellipsoids.
[Figure 3] Fig. 3. : View of the unit cell of the title compound along [010] showing the C—Br···Br—C halogen bonds between adjacent molecules drawn as dashed green lines.
1-(4-Bromo-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethan-1-one top
Crystal data top
C18H25BrOF(000) = 5631
Mr = 337.28Dx = 1.319 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5584 reflections
a = 35.007 (8) Åθ = 2.3–25.7°
b = 19.760 (5) ŵ = 2.42 mm1
c = 24.826 (10) ÅT = 293 K
β = 127.681 (6)°Block, light brown
V = 13591 (7) Å30.25 × 0.18 × 0.1 mm
Z = 32
Data collection top
Bruker APEX CCD area-detector
diffractometer
11040 independent reflections
Radiation source: fine-focus sealed tube5702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω/2θ scansθmax = 26.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 4240
Tmin = 0.85, Tmax = 0.96k = 2422
35989 measured reflectionsl = 2629
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0553P)2]
where P = (Fo2 + 2Fc2)/3
11040 reflections(Δ/σ)max = 0.003
737 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C18H25BrOV = 13591 (7) Å3
Mr = 337.28Z = 32
Monoclinic, C2/cMo Kα radiation
a = 35.007 (8) ŵ = 2.42 mm1
b = 19.760 (5) ÅT = 293 K
c = 24.826 (10) Å0.25 × 0.18 × 0.1 mm
β = 127.681 (6)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
11040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5702 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.96Rint = 0.051
35989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.17Δρmax = 0.87 e Å3
11040 reflectionsΔρmin = 0.59 e Å3
737 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26264 (2)0.32462 (3)0.34035 (3)0.0744 (2)
O10.24193 (16)0.4797 (2)0.5130 (2)0.0896 (13)
C10.22543 (16)0.3259 (2)0.3744 (2)0.0431 (12)
C20.22961 (17)0.3870 (2)0.4062 (2)0.0489 (13)
C30.20205 (18)0.3923 (2)0.4304 (2)0.0501 (13)
C40.2038 (2)0.4534 (3)0.4680 (3)0.0594 (15)
C50.1570 (2)0.4817 (3)0.4484 (3)0.0786 (17)
H5A0.16340.52110.47530.118*
H5B0.14100.44820.45630.118*
H5C0.13670.49370.40100.118*
C60.17131 (17)0.3407 (2)0.4178 (2)0.0492 (13)
H60.15160.34690.43070.059*
C70.16781 (16)0.2798 (2)0.3871 (2)0.0427 (12)
C80.19698 (16)0.2702 (2)0.3657 (2)0.0423 (12)
C90.19702 (18)0.2019 (2)0.3353 (3)0.0525 (13)
C100.1702 (2)0.1468 (3)0.3452 (3)0.0808 (13)
H100.19190.13590.39380.097*
C110.1271 (2)0.1687 (3)0.3327 (3)0.0808 (13)
H11A0.11260.13040.33850.097*
H11B0.10490.18280.28550.097*
C120.13189 (18)0.2268 (2)0.3774 (3)0.0548 (14)
C130.08205 (19)0.2593 (3)0.3399 (3)0.0908 (19)
H13A0.05900.22560.33090.136*
H13B0.07250.27820.29770.136*
H13C0.08330.29450.36760.136*
C140.1480 (2)0.2015 (3)0.4462 (3)0.0804 (18)
H14A0.17820.17820.46880.121*
H14B0.12410.17110.43980.121*
H14C0.15180.23930.47340.121*
C150.1632 (2)0.0792 (3)0.3083 (3)0.097 (2)
H15A0.15330.04450.32460.145*
H15B0.19310.06640.31730.145*
H15C0.13880.08490.26020.145*
C160.2496 (2)0.1750 (3)0.3752 (3)0.0780 (17)
H16A0.26610.18050.42320.117*
H16B0.26620.20000.36200.117*
H16C0.24890.12790.36520.117*
C170.1733 (2)0.2107 (3)0.2584 (2)0.0815 (18)
H17A0.13920.21710.23320.122*
H17B0.17920.17100.24220.122*
H17C0.18700.24950.25260.122*
C180.26116 (19)0.4443 (2)0.4136 (3)0.0702 (16)
H18A0.29420.42970.44130.105*
H18B0.25810.48230.43480.105*
H18C0.25130.45730.36950.105*
Br20.00945 (2)0.07436 (3)0.16887 (4)0.0887 (3)
O20.01668 (15)0.2345 (2)0.0076 (2)0.0880 (13)
C190.02661 (16)0.0735 (3)0.1333 (2)0.0473 (13)
C200.02763 (17)0.1362 (2)0.1082 (2)0.0492 (13)
C210.05389 (16)0.1409 (2)0.0827 (2)0.0460 (12)
C220.0542 (2)0.2032 (3)0.0481 (3)0.0576 (14)
C230.10048 (19)0.2264 (3)0.0637 (3)0.0758 (17)
H23A0.09540.26840.04070.114*
H23B0.11190.19290.04870.114*
H23C0.12400.23290.11190.114*
C240.07961 (17)0.0851 (2)0.0878 (2)0.0501 (13)
H240.09870.08950.07370.060*
C250.07861 (16)0.0228 (2)0.1127 (2)0.0461 (12)
C260.04974 (16)0.0138 (2)0.1343 (2)0.0441 (12)
C270.04296 (18)0.0560 (2)0.1557 (3)0.0558 (14)
C280.0659 (2)0.1123 (3)0.1402 (3)0.0864 (19)
H280.04380.11870.09080.104*
C290.1112 (2)0.0940 (3)0.1559 (3)0.0882 (19)
H29A0.12360.13290.14720.106*
H29B0.13360.08430.20420.106*
C300.11107 (19)0.0330 (3)0.1170 (3)0.0573 (14)
C310.0938 (2)0.0541 (3)0.0462 (3)0.093 (2)
H31A0.06120.07040.02040.139*
H31B0.11430.08930.05030.139*
H31C0.09500.01590.02350.139*
C320.16306 (19)0.0080 (3)0.1567 (3)0.0851 (18)
H32A0.16460.02720.13140.128*
H32B0.18350.04490.16350.128*
H32C0.17380.00940.20000.128*
C330.0687 (3)0.1818 (3)0.1710 (4)0.113 (2)
H33A0.07580.21630.15110.170*
H33B0.03830.19150.16170.170*
H33C0.09370.18080.21930.170*
C340.0113 (2)0.0748 (3)0.1114 (3)0.0851 (18)
H34A0.02670.04930.12610.128*
H34B0.01450.12230.11590.128*
H34C0.02620.06450.06460.128*
C350.0651 (2)0.0566 (3)0.2324 (3)0.0819 (18)
H35A0.09960.05670.25970.123*
H35B0.05450.09640.24200.123*
H35C0.05470.01710.24270.123*
C360.00293 (19)0.1976 (2)0.1111 (3)0.0702 (16)
H36A0.03140.19080.08140.105*
H36B0.01070.23700.09680.105*
H36C0.01390.20390.15690.105*
Br30.39963 (3)0.15741 (3)0.16812 (4)0.1016 (3)
O30.35630 (15)0.3856 (2)0.0044 (2)0.0942 (14)
C370.35939 (18)0.2373 (2)0.1354 (2)0.0550 (14)
C380.37308 (18)0.2858 (3)0.1100 (3)0.0551 (14)
C390.34572 (18)0.3446 (3)0.0847 (2)0.0485 (13)
C400.35430 (18)0.3989 (3)0.0503 (3)0.0614 (15)
C410.3602 (2)0.4699 (3)0.0747 (3)0.0734 (16)
H41A0.36690.49890.05040.110*
H41B0.38650.47210.12250.110*
H41C0.33100.48450.06690.110*
C420.30823 (18)0.3527 (2)0.0888 (2)0.0508 (13)
H420.29110.39320.07320.061*
C430.29456 (16)0.3039 (2)0.1147 (2)0.0437 (12)
C440.31989 (17)0.2424 (2)0.1380 (2)0.0451 (12)
C450.30483 (18)0.1835 (2)0.1637 (3)0.0531 (14)
C460.2575 (3)0.2015 (3)0.1527 (4)0.103 (2)
H460.23300.19240.10410.123*
C470.2495 (3)0.2685 (4)0.1572 (4)0.120 (3)
H47A0.27230.28150.20470.145*
H47B0.21750.27190.14540.145*
C480.25257 (18)0.3207 (3)0.1162 (3)0.0565 (14)
C490.2611 (2)0.3901 (3)0.1510 (3)0.099 (2)
H49A0.23680.39760.15690.148*
H49B0.25950.42540.12300.148*
H49C0.29240.39050.19460.148*
C500.20561 (19)0.3266 (3)0.0438 (3)0.095 (2)
H50A0.19950.28490.01990.143*
H50B0.20830.36280.02050.143*
H50C0.17940.33590.04550.143*
C510.2432 (2)0.1519 (3)0.1852 (4)0.118 (3)
H51A0.26380.15860.23360.177*
H51B0.24670.10630.17540.177*
H51C0.21030.15960.16700.177*
C520.2933 (2)0.1197 (3)0.1215 (3)0.0836 (18)
H52A0.32230.10270.13030.125*
H52B0.27030.13030.07400.125*
H52C0.28010.08600.13370.125*
C530.3453 (2)0.1696 (3)0.2399 (3)0.090 (2)
H53A0.33890.12760.25260.135*
H53B0.34630.20570.26660.135*
H53C0.37570.16680.24780.135*
C540.41666 (19)0.2769 (3)0.1108 (3)0.089 (2)
H54A0.42190.31770.09520.134*
H54B0.41090.24010.08140.134*
H54C0.44470.26720.15640.134*
Br40.16887 (3)0.43574 (4)0.20596 (4)0.1130 (3)
O40.11442 (16)0.6364 (2)0.0060 (2)0.1014 (15)
C550.11951 (18)0.5017 (2)0.1502 (2)0.0537 (14)
C560.13121 (18)0.5477 (3)0.1196 (3)0.0525 (13)
C570.09929 (18)0.6003 (2)0.0831 (2)0.0466 (13)
C580.10742 (18)0.6520 (3)0.0466 (3)0.0613 (15)
C590.1069 (2)0.7255 (3)0.0625 (3)0.0816 (18)
H59A0.11080.75340.03460.122*
H59B0.13280.73400.10960.122*
H59C0.07670.73590.05350.122*
C600.05860 (18)0.6056 (2)0.0795 (2)0.0493 (13)
H600.03860.64290.05710.059*
C610.04530 (16)0.5584 (2)0.1075 (2)0.0430 (12)
C620.07616 (18)0.5032 (2)0.1437 (2)0.0468 (13)
C630.0624 (2)0.4471 (3)0.1724 (3)0.0630 (15)
C640.0108 (3)0.4575 (4)0.1475 (5)0.134 (2)
H640.00640.44330.10010.161*
C650.0071 (3)0.5184 (4)0.1369 (4)0.134 (2)
H65A0.00650.53770.18120.161*
H65B0.04150.51320.11370.161*
C660.00145 (18)0.5707 (3)0.0977 (3)0.0573 (14)
C670.0442 (2)0.5717 (3)0.0231 (3)0.101 (2)
H67A0.03870.60450.00010.152*
H67B0.07270.58350.01820.152*
H67C0.04820.52770.00390.152*
C680.0001 (2)0.6411 (3)0.1268 (3)0.098 (2)
H68A0.00010.67600.09990.146*
H68B0.02880.64460.17300.146*
H68C0.02780.64620.12550.146*
C690.0090 (3)0.4044 (4)0.1697 (4)0.178 (4)
H69A0.00980.42300.20470.267*
H69B0.01140.36520.18690.267*
H69C0.04110.39180.13140.267*
C700.0973 (2)0.4504 (3)0.2513 (3)0.096 (2)
H70A0.08850.41640.26950.144*
H70B0.09530.49430.26600.144*
H70C0.12980.44260.26720.144*
C710.0640 (3)0.3773 (3)0.1472 (3)0.113 (2)
H71A0.03610.37170.10070.170*
H71B0.06410.34300.17470.170*
H71C0.09270.37350.15050.170*
C720.17772 (19)0.5424 (3)0.1270 (3)0.0868 (19)
H72A0.17710.50190.10510.130*
H72B0.20490.54110.17440.130*
H72C0.18050.58110.10610.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0794 (5)0.0681 (4)0.1107 (5)0.0019 (3)0.0760 (4)0.0058 (4)
O10.095 (3)0.072 (3)0.087 (3)0.017 (3)0.048 (3)0.029 (2)
C10.043 (3)0.041 (3)0.048 (3)0.006 (3)0.029 (3)0.008 (3)
C20.049 (3)0.039 (3)0.058 (3)0.003 (3)0.033 (3)0.007 (3)
C30.057 (4)0.038 (3)0.046 (3)0.006 (3)0.026 (3)0.006 (3)
C40.074 (5)0.044 (4)0.065 (4)0.006 (3)0.045 (4)0.003 (3)
C50.096 (5)0.064 (4)0.099 (5)0.002 (4)0.072 (4)0.009 (3)
C60.052 (3)0.046 (3)0.055 (3)0.001 (3)0.035 (3)0.007 (3)
C70.041 (3)0.043 (3)0.043 (3)0.001 (3)0.025 (3)0.003 (2)
C80.040 (3)0.039 (3)0.041 (3)0.004 (3)0.021 (3)0.006 (2)
C90.054 (4)0.046 (3)0.065 (4)0.003 (3)0.041 (3)0.007 (3)
C100.095 (4)0.059 (3)0.116 (3)0.024 (3)0.079 (3)0.027 (3)
C110.095 (4)0.059 (3)0.116 (3)0.024 (3)0.079 (3)0.027 (3)
C120.051 (4)0.046 (3)0.077 (4)0.004 (3)0.044 (3)0.003 (3)
C130.066 (5)0.089 (5)0.121 (5)0.012 (4)0.058 (4)0.005 (4)
C140.097 (5)0.075 (4)0.090 (5)0.006 (4)0.067 (4)0.011 (4)
C150.135 (6)0.057 (4)0.138 (6)0.032 (4)0.104 (5)0.044 (4)
C160.084 (5)0.057 (4)0.105 (5)0.015 (3)0.064 (4)0.003 (3)
C170.089 (5)0.102 (5)0.059 (4)0.006 (4)0.049 (4)0.007 (3)
C180.072 (4)0.049 (4)0.091 (4)0.009 (3)0.051 (4)0.002 (3)
Br20.1090 (6)0.0835 (5)0.1288 (6)0.0111 (4)0.1009 (5)0.0116 (4)
O20.078 (3)0.072 (3)0.102 (3)0.021 (2)0.049 (3)0.036 (2)
C190.045 (3)0.053 (4)0.046 (3)0.001 (3)0.030 (3)0.002 (3)
C200.050 (3)0.041 (3)0.054 (3)0.004 (3)0.031 (3)0.004 (3)
C210.046 (3)0.041 (3)0.049 (3)0.002 (3)0.027 (3)0.001 (3)
C220.077 (5)0.043 (3)0.060 (4)0.009 (3)0.046 (4)0.003 (3)
C230.079 (4)0.074 (4)0.093 (4)0.002 (3)0.062 (4)0.023 (3)
C240.054 (4)0.044 (3)0.062 (3)0.004 (3)0.040 (3)0.005 (3)
C250.044 (3)0.044 (3)0.048 (3)0.006 (3)0.027 (3)0.001 (3)
C260.045 (3)0.045 (3)0.041 (3)0.000 (3)0.026 (3)0.004 (2)
C270.058 (4)0.046 (3)0.062 (4)0.002 (3)0.036 (3)0.007 (3)
C280.096 (5)0.057 (4)0.118 (5)0.014 (4)0.071 (5)0.019 (4)
C290.099 (6)0.058 (4)0.111 (5)0.029 (4)0.066 (5)0.017 (4)
C300.061 (4)0.050 (4)0.063 (4)0.007 (3)0.039 (3)0.007 (3)
C310.113 (5)0.093 (5)0.082 (5)0.023 (4)0.065 (4)0.005 (4)
C320.067 (4)0.086 (5)0.102 (5)0.015 (4)0.052 (4)0.001 (4)
C330.164 (7)0.049 (4)0.162 (7)0.017 (4)0.117 (6)0.029 (4)
C340.075 (5)0.068 (4)0.094 (5)0.019 (4)0.042 (4)0.003 (3)
C350.092 (5)0.089 (5)0.060 (4)0.011 (4)0.045 (4)0.015 (3)
C360.086 (4)0.054 (4)0.095 (4)0.011 (3)0.067 (4)0.004 (3)
Br30.1022 (6)0.0822 (5)0.1513 (7)0.0428 (4)0.0933 (5)0.0474 (5)
O30.136 (4)0.092 (3)0.099 (3)0.023 (3)0.095 (3)0.007 (3)
C370.052 (4)0.048 (3)0.060 (4)0.009 (3)0.032 (3)0.007 (3)
C380.052 (4)0.056 (4)0.068 (4)0.000 (3)0.042 (3)0.001 (3)
C390.048 (3)0.050 (3)0.053 (3)0.004 (3)0.034 (3)0.003 (3)
C400.056 (4)0.069 (4)0.067 (4)0.004 (3)0.042 (3)0.003 (3)
C410.086 (4)0.063 (4)0.081 (4)0.009 (3)0.055 (4)0.008 (3)
C420.059 (4)0.043 (3)0.051 (3)0.004 (3)0.034 (3)0.001 (3)
C430.041 (3)0.047 (3)0.041 (3)0.000 (3)0.024 (3)0.001 (3)
C440.046 (3)0.046 (3)0.044 (3)0.006 (3)0.028 (3)0.005 (3)
C450.058 (4)0.046 (3)0.060 (4)0.001 (3)0.038 (3)0.003 (3)
C460.134 (6)0.061 (5)0.189 (7)0.003 (4)0.137 (6)0.019 (5)
C470.123 (6)0.119 (7)0.192 (8)0.030 (5)0.133 (6)0.055 (6)
C480.050 (4)0.061 (4)0.069 (4)0.000 (3)0.041 (3)0.006 (3)
C490.089 (5)0.110 (6)0.119 (5)0.007 (4)0.075 (5)0.025 (4)
C500.046 (4)0.135 (6)0.077 (5)0.009 (4)0.023 (4)0.005 (4)
C510.124 (6)0.113 (6)0.173 (7)0.000 (5)0.120 (6)0.035 (5)
C520.109 (5)0.061 (4)0.092 (5)0.014 (4)0.067 (4)0.002 (3)
C530.112 (5)0.084 (5)0.069 (4)0.012 (4)0.053 (4)0.017 (4)
C540.077 (4)0.088 (5)0.133 (5)0.012 (4)0.081 (4)0.022 (4)
Br40.1032 (6)0.1114 (6)0.1450 (7)0.0567 (5)0.0864 (6)0.0657 (5)
O40.165 (4)0.083 (3)0.128 (4)0.016 (3)0.126 (4)0.004 (3)
C550.058 (4)0.042 (3)0.066 (4)0.004 (3)0.041 (3)0.002 (3)
C560.050 (4)0.052 (4)0.058 (3)0.002 (3)0.034 (3)0.003 (3)
C570.053 (4)0.045 (3)0.051 (3)0.005 (3)0.036 (3)0.001 (3)
C580.059 (4)0.063 (4)0.075 (4)0.003 (3)0.048 (3)0.002 (3)
C590.101 (5)0.059 (4)0.111 (5)0.005 (4)0.078 (4)0.012 (4)
C600.055 (4)0.043 (3)0.051 (3)0.007 (3)0.032 (3)0.003 (3)
C610.044 (3)0.041 (3)0.048 (3)0.004 (3)0.030 (3)0.002 (3)
C620.053 (4)0.045 (3)0.043 (3)0.002 (3)0.030 (3)0.004 (3)
C630.075 (4)0.060 (4)0.063 (4)0.002 (3)0.047 (4)0.018 (3)
C640.114 (5)0.117 (5)0.226 (6)0.032 (4)0.132 (5)0.084 (5)
C650.114 (5)0.117 (5)0.226 (6)0.032 (4)0.132 (5)0.084 (5)
C660.051 (4)0.055 (4)0.070 (4)0.002 (3)0.039 (3)0.009 (3)
C670.054 (4)0.125 (6)0.098 (5)0.002 (4)0.032 (4)0.020 (4)
C680.079 (5)0.123 (6)0.107 (5)0.015 (4)0.065 (4)0.021 (4)
C690.124 (7)0.196 (9)0.226 (10)0.003 (6)0.113 (7)0.108 (8)
C700.121 (6)0.098 (5)0.079 (5)0.001 (4)0.067 (5)0.024 (4)
C710.177 (7)0.047 (4)0.115 (5)0.034 (4)0.089 (6)0.002 (4)
C720.071 (4)0.100 (5)0.108 (5)0.014 (4)0.063 (4)0.018 (4)
Geometric parameters (Å, º) top
Br1—C11.939 (4)Br3—C371.933 (5)
O1—C41.216 (6)O3—C401.214 (5)
C1—C21.400 (6)C37—C381.385 (6)
C1—C81.410 (6)C37—C441.426 (6)
C2—C31.420 (6)C38—C391.387 (6)
C2—C181.512 (6)C38—C541.523 (6)
C3—C61.373 (6)C39—C421.386 (6)
C3—C41.502 (7)C39—C401.511 (7)
C4—C51.503 (7)C40—C411.491 (7)
C5—H5A0.9600C41—H41A0.9600
C5—H5B0.9600C41—H41B0.9600
C5—H5C0.9600C41—H41C0.9600
C6—C71.389 (6)C42—C431.397 (6)
C6—H60.9300C42—H420.9300
C7—C81.423 (6)C43—C441.405 (6)
C7—C121.538 (6)C43—C481.528 (6)
C8—C91.545 (6)C44—C451.564 (6)
C9—C101.552 (6)C45—C521.528 (6)
C9—C161.555 (6)C45—C531.544 (7)
C9—C171.557 (6)C45—C461.549 (7)
C10—C111.410 (7)C46—C471.371 (8)
C10—C151.552 (7)C46—C511.534 (7)
C10—H100.9800C46—H460.9800
C11—C121.532 (6)C47—C481.501 (7)
C11—H11A0.9700C47—H47A0.9700
C11—H11B0.9700C47—H47B0.9700
C12—C141.520 (6)C48—C501.528 (7)
C12—C131.529 (7)C48—C491.549 (7)
C13—H13A0.9600C49—H49A0.9600
C13—H13B0.9600C49—H49B0.9600
C13—H13C0.9600C49—H49C0.9600
C14—H14A0.9600C50—H50A0.9600
C14—H14B0.9600C50—H50B0.9600
C14—H14C0.9600C50—H50C0.9600
C15—H15A0.9600C51—H51A0.9600
C15—H15B0.9600C51—H51B0.9600
C15—H15C0.9600C51—H51C0.9600
C16—H16A0.9600C52—H52A0.9600
C16—H16B0.9600C52—H52B0.9600
C16—H16C0.9600C52—H52C0.9600
C17—H17A0.9600C53—H53A0.9600
C17—H17B0.9600C53—H53B0.9600
C17—H17C0.9600C53—H53C0.9600
C18—H18A0.9600C54—H54A0.9600
C18—H18B0.9600C54—H54B0.9600
C18—H18C0.9600C54—H54C0.9600
Br2—C191.934 (4)Br4—C551.917 (5)
O2—C221.225 (6)O4—C581.212 (5)
C19—C201.395 (6)C55—C561.396 (6)
C19—C261.422 (6)C55—C621.424 (6)
C20—C211.403 (6)C56—C571.384 (6)
C20—C361.516 (6)C56—C721.527 (6)
C21—C241.381 (6)C57—C601.375 (6)
C21—C221.505 (6)C57—C581.505 (7)
C22—C231.489 (7)C58—C591.509 (7)
C23—H23A0.9600C59—H59A0.9600
C23—H23B0.9600C59—H59B0.9600
C23—H23C0.9600C59—H59C0.9600
C24—C251.386 (6)C60—C611.402 (6)
C24—H240.9300C60—H600.9300
C25—C261.417 (6)C61—C621.407 (6)
C25—C301.539 (6)C61—C661.519 (6)
C26—C271.546 (6)C62—C631.545 (6)
C27—C341.549 (7)C63—C641.523 (8)
C27—C281.553 (7)C63—C711.529 (7)
C27—C351.556 (6)C63—C701.551 (7)
C28—C291.428 (7)C64—C651.307 (8)
C28—C331.545 (7)C64—C691.536 (8)
C28—H280.9800C64—H640.9800
C29—C301.543 (7)C65—C661.515 (7)
C29—H29A0.9700C65—H65A0.9700
C29—H29B0.9700C65—H65B0.9700
C30—C311.527 (7)C66—C671.509 (7)
C30—C321.528 (7)C66—C681.553 (7)
C31—H31A0.9600C67—H67A0.9600
C31—H31B0.9600C67—H67B0.9600
C31—H31C0.9600C67—H67C0.9600
C32—H32A0.9600C68—H68A0.9600
C32—H32B0.9600C68—H68B0.9600
C32—H32C0.9600C68—H68C0.9600
C33—H33A0.9600C69—H69A0.9600
C33—H33B0.9600C69—H69B0.9600
C33—H33C0.9600C69—H69C0.9600
C34—H34A0.9600C70—H70A0.9600
C34—H34B0.9600C70—H70B0.9600
C34—H34C0.9600C70—H70C0.9600
C35—H35A0.9600C71—H71A0.9600
C35—H35B0.9600C71—H71B0.9600
C35—H35C0.9600C71—H71C0.9600
C36—H36A0.9600C72—H72A0.9600
C36—H36B0.9600C72—H72B0.9600
C36—H36C0.9600C72—H72C0.9600
C2—C1—C8125.6 (4)C38—C37—C44126.0 (4)
C2—C1—Br1112.9 (3)C38—C37—Br3112.9 (4)
C8—C1—Br1121.5 (3)C44—C37—Br3121.1 (4)
C1—C2—C3116.0 (4)C37—C38—C39116.8 (4)
C1—C2—C18122.2 (4)C37—C38—C54122.5 (5)
C3—C2—C18121.9 (4)C39—C38—C54120.8 (5)
C6—C3—C2119.3 (4)C42—C39—C38119.1 (4)
C6—C3—C4117.9 (5)C42—C39—C40118.8 (5)
C2—C3—C4122.8 (5)C38—C39—C40122.0 (4)
O1—C4—C3121.4 (5)O3—C40—C41120.8 (5)
O1—C4—C5120.3 (5)O3—C40—C39121.4 (5)
C3—C4—C5118.3 (5)C41—C40—C39117.8 (5)
C4—C5—H5A109.5C40—C41—H41A109.5
C4—C5—H5B109.5C40—C41—H41B109.5
H5A—C5—H5B109.5H41A—C41—H41B109.5
C4—C5—H5C109.5C40—C41—H41C109.5
H5A—C5—H5C109.5H41A—C41—H41C109.5
H5B—C5—H5C109.5H41B—C41—H41C109.5
C3—C6—C7124.2 (4)C39—C42—C43124.1 (5)
C3—C6—H6117.9C39—C42—H42117.9
C7—C6—H6117.9C43—C42—H42117.9
C6—C7—C8118.6 (4)C42—C43—C44118.6 (4)
C6—C7—C12117.7 (4)C42—C43—C48117.8 (4)
C8—C7—C12123.7 (4)C44—C43—C48123.6 (4)
C1—C8—C7116.0 (4)C43—C44—C37115.3 (4)
C1—C8—C9123.1 (4)C43—C44—C45121.7 (4)
C7—C8—C9120.9 (4)C37—C44—C45122.9 (4)
C8—C9—C10110.7 (4)C52—C45—C53110.6 (4)
C8—C9—C16109.9 (4)C52—C45—C46105.3 (5)
C10—C9—C16104.7 (4)C53—C45—C46109.7 (5)
C8—C9—C17109.9 (4)C52—C45—C44110.4 (4)
C10—C9—C17110.6 (4)C53—C45—C44110.3 (4)
C16—C9—C17110.8 (4)C46—C45—C44110.4 (4)
C11—C10—C9114.8 (5)C47—C46—C51115.2 (5)
C11—C10—C15111.9 (5)C47—C46—C45117.2 (5)
C9—C10—C15113.7 (4)C51—C46—C45114.7 (5)
C11—C10—H10105.1C47—C46—H46102.1
C9—C10—H10105.1C51—C46—H46102.1
C15—C10—H10105.1C45—C46—H46102.1
C10—C11—C12116.2 (5)C46—C47—C48120.3 (6)
C10—C11—H11A108.2C46—C47—H47A107.2
C12—C11—H11A108.2C48—C47—H47A107.2
C10—C11—H11B108.2C46—C47—H47B107.2
C12—C11—H11B108.2C48—C47—H47B107.2
H11A—C11—H11B107.4H47A—C47—H47B106.9
C14—C12—C13108.8 (4)C47—C48—C50112.2 (5)
C14—C12—C11111.7 (4)C47—C48—C43109.7 (4)
C13—C12—C11107.1 (5)C50—C48—C43110.4 (4)
C14—C12—C7110.0 (4)C47—C48—C49107.5 (5)
C13—C12—C7109.2 (4)C50—C48—C49106.9 (5)
C11—C12—C7109.9 (4)C43—C48—C49110.1 (4)
C12—C13—H13A109.5C48—C49—H49A109.5
C12—C13—H13B109.5C48—C49—H49B109.5
H13A—C13—H13B109.5H49A—C49—H49B109.5
C12—C13—H13C109.5C48—C49—H49C109.5
H13A—C13—H13C109.5H49A—C49—H49C109.5
H13B—C13—H13C109.5H49B—C49—H49C109.5
C12—C14—H14A109.5C48—C50—H50A109.5
C12—C14—H14B109.5C48—C50—H50B109.5
H14A—C14—H14B109.5H50A—C50—H50B109.5
C12—C14—H14C109.5C48—C50—H50C109.5
H14A—C14—H14C109.5H50A—C50—H50C109.5
H14B—C14—H14C109.5H50B—C50—H50C109.5
C10—C15—H15A109.5C46—C51—H51A109.5
C10—C15—H15B109.5C46—C51—H51B109.5
H15A—C15—H15B109.5H51A—C51—H51B109.5
C10—C15—H15C109.5C46—C51—H51C109.5
H15A—C15—H15C109.5H51A—C51—H51C109.5
H15B—C15—H15C109.5H51B—C51—H51C109.5
C9—C16—H16A109.5C45—C52—H52A109.5
C9—C16—H16B109.5C45—C52—H52B109.5
H16A—C16—H16B109.5H52A—C52—H52B109.5
C9—C16—H16C109.5C45—C52—H52C109.5
H16A—C16—H16C109.5H52A—C52—H52C109.5
H16B—C16—H16C109.5H52B—C52—H52C109.5
C9—C17—H17A109.5C45—C53—H53A109.5
C9—C17—H17B109.5C45—C53—H53B109.5
H17A—C17—H17B109.5H53A—C53—H53B109.5
C9—C17—H17C109.5C45—C53—H53C109.5
H17A—C17—H17C109.5H53A—C53—H53C109.5
H17B—C17—H17C109.5H53B—C53—H53C109.5
C2—C18—H18A109.5C38—C54—H54A109.5
C2—C18—H18B109.5C38—C54—H54B109.5
H18A—C18—H18B109.5H54A—C54—H54B109.5
C2—C18—H18C109.5C38—C54—H54C109.5
H18A—C18—H18C109.5H54A—C54—H54C109.5
H18B—C18—H18C109.5H54B—C54—H54C109.5
C20—C19—C26125.1 (4)C56—C55—C62124.8 (4)
C20—C19—Br2113.4 (3)C56—C55—Br4113.6 (4)
C26—C19—Br2121.4 (3)C62—C55—Br4121.6 (4)
C19—C20—C21117.6 (4)C57—C56—C55117.2 (4)
C19—C20—C36121.3 (4)C57—C56—C72120.3 (5)
C21—C20—C36121.2 (4)C55—C56—C72122.5 (5)
C24—C21—C20118.4 (4)C60—C57—C56119.3 (4)
C24—C21—C22118.3 (4)C60—C57—C58118.7 (5)
C20—C21—C22123.2 (4)C56—C57—C58122.0 (5)
O2—C22—C23120.6 (5)O4—C58—C57122.5 (5)
O2—C22—C21120.1 (5)O4—C58—C59120.3 (5)
C23—C22—C21119.3 (5)C57—C58—C59117.2 (5)
C22—C23—H23A109.5C58—C59—H59A109.5
C22—C23—H23B109.5C58—C59—H59B109.5
H23A—C23—H23B109.5H59A—C59—H59B109.5
C22—C23—H23C109.5C58—C59—H59C109.5
H23A—C23—H23C109.5H59A—C59—H59C109.5
H23B—C23—H23C109.5H59B—C59—H59C109.5
C21—C24—C25123.9 (4)C57—C60—C61124.1 (4)
C21—C24—H24118.1C57—C60—H60117.9
C25—C24—H24118.1C61—C60—H60117.9
C24—C25—C26119.9 (4)C60—C61—C62118.3 (4)
C24—C25—C30116.6 (4)C60—C61—C66117.7 (4)
C26—C25—C30123.4 (4)C62—C61—C66124.0 (4)
C25—C26—C19114.7 (4)C61—C62—C55116.0 (4)
C25—C26—C27122.5 (4)C61—C62—C63121.1 (4)
C19—C26—C27122.8 (4)C55—C62—C63122.9 (4)
C26—C27—C34110.4 (4)C64—C63—C71106.6 (5)
C26—C27—C28110.1 (4)C64—C63—C62110.0 (4)
C34—C27—C28104.3 (5)C71—C63—C62111.1 (4)
C26—C27—C35111.2 (4)C64—C63—C70109.3 (5)
C34—C27—C35110.1 (4)C71—C63—C70110.9 (5)
C28—C27—C35110.6 (4)C62—C63—C70109.0 (4)
C29—C28—C33111.5 (5)C65—C64—C63120.7 (6)
C29—C28—C27114.0 (5)C65—C64—C69115.7 (6)
C33—C28—C27113.6 (5)C63—C64—C69116.5 (6)
C29—C28—H28105.6C65—C64—H6498.9
C33—C28—H28105.6C63—C64—H6498.9
C27—C28—H28105.6C69—C64—H6498.9
C28—C29—C30116.7 (5)C64—C65—C66121.4 (6)
C28—C29—H29A108.1C64—C65—H65A107.0
C30—C29—H29A108.1C66—C65—H65A107.0
C28—C29—H29B108.1C64—C65—H65B107.0
C30—C29—H29B108.1C66—C65—H65B107.0
H29A—C29—H29B107.3H65A—C65—H65B106.7
C31—C30—C32107.9 (4)C67—C66—C65112.1 (5)
C31—C30—C25111.1 (4)C67—C66—C61111.2 (4)
C32—C30—C25110.6 (4)C65—C66—C61109.8 (4)
C31—C30—C29110.7 (5)C67—C66—C68106.6 (5)
C32—C30—C29107.6 (5)C65—C66—C68107.0 (5)
C25—C30—C29108.9 (4)C61—C66—C68110.0 (4)
C30—C31—H31A109.5C66—C67—H67A109.5
C30—C31—H31B109.5C66—C67—H67B109.5
H31A—C31—H31B109.5H67A—C67—H67B109.5
C30—C31—H31C109.5C66—C67—H67C109.5
H31A—C31—H31C109.5H67A—C67—H67C109.5
H31B—C31—H31C109.5H67B—C67—H67C109.5
C30—C32—H32A109.5C66—C68—H68A109.5
C30—C32—H32B109.5C66—C68—H68B109.5
H32A—C32—H32B109.5H68A—C68—H68B109.5
C30—C32—H32C109.5C66—C68—H68C109.5
H32A—C32—H32C109.5H68A—C68—H68C109.5
H32B—C32—H32C109.5H68B—C68—H68C109.5
C28—C33—H33A109.5C64—C69—H69A109.5
C28—C33—H33B109.5C64—C69—H69B109.5
H33A—C33—H33B109.5H69A—C69—H69B109.5
C28—C33—H33C109.5C64—C69—H69C109.5
H33A—C33—H33C109.5H69A—C69—H69C109.5
H33B—C33—H33C109.5H69B—C69—H69C109.5
C27—C34—H34A109.5C63—C70—H70A109.5
C27—C34—H34B109.5C63—C70—H70B109.5
H34A—C34—H34B109.5H70A—C70—H70B109.5
C27—C34—H34C109.5C63—C70—H70C109.5
H34A—C34—H34C109.5H70A—C70—H70C109.5
H34B—C34—H34C109.5H70B—C70—H70C109.5
C27—C35—H35A109.5C63—C71—H71A109.5
C27—C35—H35B109.5C63—C71—H71B109.5
H35A—C35—H35B109.5H71A—C71—H71B109.5
C27—C35—H35C109.5C63—C71—H71C109.5
H35A—C35—H35C109.5H71A—C71—H71C109.5
H35B—C35—H35C109.5H71B—C71—H71C109.5
C20—C36—H36A109.5C56—C72—H72A109.5
C20—C36—H36B109.5C56—C72—H72B109.5
H36A—C36—H36B109.5H72A—C72—H72B109.5
C20—C36—H36C109.5C56—C72—H72C109.5
H36A—C36—H36C109.5H72A—C72—H72C109.5
H36B—C36—H36C109.5H72B—C72—H72C109.5
C8—C1—C2—C30.8 (7)C44—C37—C38—C390.1 (8)
Br1—C1—C2—C3178.1 (3)Br3—C37—C38—C39179.3 (4)
C8—C1—C2—C18179.8 (4)C44—C37—C38—C54178.4 (5)
Br1—C1—C2—C181.3 (6)Br3—C37—C38—C542.2 (6)
C1—C2—C3—C64.2 (7)C37—C38—C39—C422.7 (7)
C18—C2—C3—C6175.2 (4)C54—C38—C39—C42175.9 (5)
C1—C2—C3—C4177.7 (4)C37—C38—C39—C40175.0 (5)
C18—C2—C3—C42.9 (7)C54—C38—C39—C406.5 (8)
C6—C3—C4—O1137.0 (5)C42—C39—C40—O3126.4 (5)
C2—C3—C4—O144.9 (7)C38—C39—C40—O351.3 (7)
C6—C3—C4—C543.3 (6)C42—C39—C40—C4153.5 (6)
C2—C3—C4—C5134.9 (5)C38—C39—C40—C41128.8 (5)
C2—C3—C6—C75.5 (7)C38—C39—C42—C432.6 (7)
C4—C3—C6—C7176.3 (5)C40—C39—C42—C43175.2 (4)
C3—C6—C7—C81.4 (7)C39—C42—C43—C440.3 (7)
C3—C6—C7—C12179.3 (4)C39—C42—C43—C48179.6 (4)
C2—C1—C8—C74.6 (7)C42—C43—C44—C372.8 (6)
Br1—C1—C8—C7174.2 (3)C48—C43—C44—C37177.2 (4)
C2—C1—C8—C9174.9 (4)C42—C43—C44—C45176.2 (4)
Br1—C1—C8—C96.3 (6)C48—C43—C44—C453.8 (7)
C6—C7—C8—C13.4 (6)C38—C37—C44—C432.7 (7)
C12—C7—C8—C1175.8 (4)Br3—C37—C44—C43178.0 (3)
C6—C7—C8—C9176.1 (4)C38—C37—C44—C45176.3 (5)
C12—C7—C8—C94.7 (7)Br3—C37—C44—C453.0 (6)
C1—C8—C9—C10168.9 (4)C43—C44—C45—C52121.3 (5)
C7—C8—C9—C1010.5 (6)C37—C44—C45—C5257.7 (6)
C1—C8—C9—C1653.7 (6)C43—C44—C45—C53116.2 (5)
C7—C8—C9—C16125.8 (4)C37—C44—C45—C5364.9 (6)
C1—C8—C9—C1768.6 (6)C43—C44—C45—C465.3 (6)
C7—C8—C9—C17112.0 (5)C37—C44—C45—C46173.6 (5)
C8—C9—C10—C1142.2 (7)C52—C45—C46—C47151.1 (7)
C16—C9—C10—C11160.6 (5)C53—C45—C46—C4789.9 (7)
C17—C9—C10—C1179.9 (6)C44—C45—C46—C4731.9 (8)
C8—C9—C10—C15172.9 (5)C52—C45—C46—C5169.1 (7)
C16—C9—C10—C1568.7 (6)C53—C45—C46—C5149.9 (7)
C17—C9—C10—C1550.8 (6)C44—C45—C46—C51171.7 (5)
C9—C10—C11—C1260.2 (7)C51—C46—C47—C48168.0 (6)
C15—C10—C11—C12168.2 (5)C45—C46—C47—C4852.4 (10)
C10—C11—C12—C1481.5 (6)C46—C47—C48—C5083.7 (8)
C10—C11—C12—C13159.4 (5)C46—C47—C48—C4339.3 (9)
C10—C11—C12—C740.8 (7)C46—C47—C48—C49159.0 (7)
C6—C7—C12—C1465.9 (5)C42—C43—C48—C47169.4 (5)
C8—C7—C12—C14114.9 (5)C44—C43—C48—C4710.6 (7)
C6—C7—C12—C1353.5 (6)C42—C43—C48—C5066.4 (6)
C8—C7—C12—C13125.7 (5)C44—C43—C48—C50113.6 (5)
C6—C7—C12—C11170.7 (4)C42—C43—C48—C4951.4 (6)
C8—C7—C12—C118.5 (6)C44—C43—C48—C49128.6 (5)
C26—C19—C20—C210.7 (7)C62—C55—C56—C573.3 (7)
Br2—C19—C20—C21178.6 (3)Br4—C55—C56—C57174.7 (3)
C26—C19—C20—C36178.3 (4)C62—C55—C56—C72178.4 (5)
Br2—C19—C20—C361.0 (6)Br4—C55—C56—C723.6 (6)
C19—C20—C21—C244.1 (7)C55—C56—C57—C601.0 (7)
C36—C20—C21—C24173.5 (4)C72—C56—C57—C60177.3 (4)
C19—C20—C21—C22173.9 (4)C55—C56—C57—C58178.4 (5)
C36—C20—C21—C228.4 (7)C72—C56—C57—C583.2 (7)
C24—C21—C22—O2136.4 (5)C60—C57—C58—O4125.9 (6)
C20—C21—C22—O241.6 (7)C56—C57—C58—O453.5 (8)
C24—C21—C22—C2343.7 (6)C60—C57—C58—C5954.4 (6)
C20—C21—C22—C23138.2 (5)C56—C57—C58—C59126.1 (5)
C20—C21—C24—C254.4 (7)C56—C57—C60—C613.8 (7)
C22—C21—C24—C25173.7 (5)C58—C57—C60—C61175.6 (4)
C21—C24—C25—C260.3 (7)C57—C60—C61—C622.3 (7)
C21—C24—C25—C30177.8 (4)C57—C60—C61—C66178.6 (4)
C24—C25—C26—C194.8 (6)C60—C61—C62—C551.8 (6)
C30—C25—C26—C19173.2 (4)C66—C61—C62—C55177.3 (4)
C24—C25—C26—C27173.7 (4)C60—C61—C62—C63176.5 (4)
C30—C25—C26—C278.3 (7)C66—C61—C62—C634.4 (7)
C20—C19—C26—C255.1 (7)C56—C55—C62—C614.7 (7)
Br2—C19—C26—C25174.1 (3)Br4—C55—C62—C61173.2 (3)
C20—C19—C26—C27173.4 (4)C56—C55—C62—C63173.6 (5)
Br2—C19—C26—C277.4 (6)Br4—C55—C62—C638.5 (6)
C25—C26—C27—C34122.2 (5)C61—C62—C63—C647.3 (7)
C19—C26—C27—C3456.2 (6)C55—C62—C63—C64171.0 (5)
C25—C26—C27—C287.7 (6)C61—C62—C63—C71125.0 (5)
C19—C26—C27—C28170.8 (5)C55—C62—C63—C7153.2 (6)
C25—C26—C27—C35115.2 (5)C61—C62—C63—C70112.5 (5)
C19—C26—C27—C3566.4 (6)C55—C62—C63—C7069.2 (6)
C26—C27—C28—C2940.8 (7)C71—C63—C64—C65153.1 (8)
C34—C27—C28—C29159.2 (5)C62—C63—C64—C6532.6 (11)
C35—C27—C28—C2982.4 (6)C70—C63—C64—C6587.0 (9)
C26—C27—C28—C33170.1 (5)C71—C63—C64—C6957.5 (9)
C34—C27—C28—C3371.5 (6)C62—C63—C64—C69178.0 (7)
C35—C27—C28—C3346.9 (7)C70—C63—C64—C6962.3 (9)
C33—C28—C29—C30168.5 (5)C63—C64—C65—C6646.8 (13)
C27—C28—C29—C3061.3 (7)C69—C64—C65—C66163.6 (7)
C24—C25—C30—C3166.6 (6)C64—C65—C66—C6794.1 (9)
C26—C25—C30—C31115.3 (5)C64—C65—C66—C6130.0 (11)
C24—C25—C30—C3253.1 (6)C64—C65—C66—C68149.4 (9)
C26—C25—C30—C32125.0 (5)C60—C61—C66—C6760.7 (6)
C24—C25—C30—C29171.2 (5)C62—C61—C66—C67120.2 (5)
C26—C25—C30—C296.9 (7)C60—C61—C66—C65174.7 (5)
C28—C29—C30—C3180.7 (6)C62—C61—C66—C654.4 (7)
C28—C29—C30—C32161.6 (5)C60—C61—C66—C6857.2 (6)
C28—C29—C30—C2541.7 (7)C62—C61—C66—C68121.9 (5)

Experimental details

Crystal data
Chemical formulaC18H25BrO
Mr337.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)35.007 (8), 19.760 (5), 24.826 (10)
β (°) 127.681 (6)
V3)13591 (7)
Z32
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.25 × 0.18 × 0.1
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.85, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
35989, 11040, 5702
Rint0.051
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.147, 1.17
No. of reflections11040
No. of parameters737
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.59

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors wish to thank Dr Roland Maul (BAM Federal Institute for Materials Research and Testing, Berlin, Germany) for providing human liver and the protocol for microsomal conversion.

References

First citationBiselli, S., Gatermann, R., Kallenborn, R., Sydnes, L. K. & Hühnerfuss, H. (2004). The Handbook of Environmental Chemistry, Vol. 3, pp. 89–211. Berlin: Springer.
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationDe Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200–2202.  CSD CrossRef CAS Web of Science IUCr Journals
First citationEsslinger, S., Becker, R., Maul, R. & Nehls, I. (2011). Environ. Sci. Technol. 45, 3938–3944.  Web of Science CrossRef CAS PubMed
First citationFaust, R., Nauroozi, D., Bruhn, C., Koch, B., Kuhlich, P., Piechotta, C. & Nehls, I. (2011). Acta Cryst. E67, o1462–o1463.  Web of Science CSD CrossRef IUCr Journals
First citationHeberer, T. (2003). Acta Hydroch. Hydrob. 30, 227–243.  CrossRef CAS
First citationKuhlich, P., Emmerling, F., Piechotta, C. & Nehls, I. (2011). Acta Cryst. E67, o485.  Web of Science CSD CrossRef IUCr Journals
First citationKuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.  Web of Science CSD CrossRef IUCr Journals
First citationKuhlich, P., Göstl, R., Teichert, P., Piechotta, C. & Nehls, I. (2011). Anal. Bioanal. Chem. 399, 3579–3588.  Web of Science CSD CrossRef CAS PubMed
First citationMartin, C., Moeder, M., Daniel, X., Krauss, G. & Schlosser, D. (2007). Environ. Sci. Technol. 41, 5395–5402.  Web of Science CrossRef PubMed CAS
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTlili, A., Xia, N., Monnier, F. & Taillefer, M. (2009). Angew. Chem. Int. Ed. 48, 8725–8728.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds