organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyrimidinium di­hydrogen phosphate

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and bDepartment of Chemistry, Kakatiya University, Warangal 506 009, India
*Correspondence e-mail: jyothisri97@yahoo.co.in

(Received 8 February 2013; accepted 6 March 2013; online 13 March 2013)

A charge-assisted hydrogen-bonding network involving N—H⋯O and O—H⋯O hydrogen bonds stabilizes the crystal of the title salt, C5H8N3+·H2PO4. The dihydrogen phosphate anions form one-dimensional chains along [100], via O—H⋯O hydrogen bonds. The 2-amino-4-methyl­pyrimidinium cations are linked to these chains by means of two different kinds of N—H⋯O hydrogen bonds. Neighbouring chains are linked via C—H⋯N and C—H⋯O hydrogen bonds forming two-dimensional slab-like networks lying parallel to (01-1).

Related literature

Intriguing anion clusters formed by the supra­molecular assembly of dihydrogen phosphates have been investigated recently (see: Hossain et al., 2012[Hossain, M. A., Muhammet, I. K., Avijit, P., Musabbir, A. S. & Frank, R. F. (2012). Cryst. Growth Des. 12, 567-571.]). Methyl­pyrimidine derivatives are known to be synthetic precursors to many bioactive pyrimidine derivatives (see: Xue et al., 1993[Xue, S. J., Zhang, A. D. & Wang, H. T. (1993). Chem. Reagents, 15, 181-182.]). Metal complexes of pyrimidines (see: Zhu et al., 2008[Zhu, W., Liu, X. & Wang, H. (2008). Acta Opt. Sin. 28, 1155-1160.]) and their proton transfer complexes with mineral acids are reported (see: Aakeroy et al., 2003[Aakeroy, C. B., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837-846.]). The infinite O—H⋯O hydrogen-bond chain present in this material is a structural feature suggestive of possible proton conducting behaviour (see: Haile et al., 2001[Haile, S. M., Boysen, D. A., Chisholm, C. R. I. & Merle, R. B. (2001). Nature, 410, 910-913.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·H2PO4

  • Mr = 207.13

  • Triclinic, [P \overline 1]

  • a = 6.1720 (2) Å

  • b = 7.5616 (3) Å

  • c = 9.9216 (4) Å

  • α = 100.562 (3)°

  • β = 99.821 (3)°

  • γ = 102.279 (4)°

  • V = 434.07 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.928, Tmax = 0.947

  • 9718 measured reflections

  • 1717 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.08

  • 1717 reflections

  • 125 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.80 2.6100 (18) 168
N1—H1N⋯O2ii 0.86 2.14 3.000 (2) 177
O2—H2⋯O4iii 0.82 1.80 2.5843 (17) 161
N1—H2N⋯O3iv 0.86 2.01 2.845 (2) 163
N3—H3N⋯O3ii 0.90 (2) 1.73 (2) 2.6276 (19) 173 (2)
C4—H4⋯N2v 0.93 2.55 3.463 (2) 166
C5—H5B⋯O1vi 0.96 2.58 3.531 (3) 171
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+2; (v) x+1, y, z; (vi) -x, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, a multicomponent crystal, AMHP, crystallizes in triclinic P-1, with a protonated 2-amino-4-methylpyrimidine molecule and a dihydrogenphosphate moiety in the asymmetric unit (Fig. 1). The dihydrogenphosphate residue forms a chain via O—H···O hydrogen bonds. 2-Amino-4-methylpyrimidinium cations are linked to these chains by means of two different kinds of N—H···O hydrogen bonds. The crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds and the resulting supramolecular assembly is shown in Figure 2. The infinite hydrogen bond chains present in this structure are of special interest due to the anticipated proton conductivity of the material (see: Haile et al.2001).

Related literature top

Intriguing anion clusters formed by the supramolecular assembly of dihydrogen phosphates have been investigated recently (see: Hossain et al., 2012). Methylpyrimidine derivatives are known to be synthetic precursors to many bioactive pyrimidine derivatives (see: Xue et al., 1993). Metal complexes of pyrimidines (see: Zhu et al., 2008) and their proton transfer complexes with mineral acids are reported (see: Aakeroy et al., 2003). The infinite O—H···O hydrogen-bond chain present in this material is a structural feature suggestive of possible proton conducting behaviour (see: Haile et al., 2001).

Experimental top

The title compound was prepared by treating 2-amino 4-methyl pyramidine with phosphoric acid (H3PO4) in aqueous solution (Scheme 1) in 1:1 molar ratio. The crystals were harvested from the solution after 10 days and suitable crystal for single-crystal X-ray diffraction study were chosen using a polarizing microscope.

Refinement top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008), WinGX(Farrugia, 2012); molecular graphics: Mercury 2.3 (Macrae et al. 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of supramolecular chain showing the hydrogen bonding between dihydrogen phosphate residues and the interlinked 2-amino-4-methylpyrimidine molecules.
2-Amino-4-methylpyrimidinium dihydrogen phosphate top
Crystal data top
C5H8N3+·H2PO4Z = 2
Mr = 207.13F(000) = 216
Triclinic, P1Least Squares Treatment of 25 SET4 setting angles.
Hall symbol: -P 1Dx = 1.585 Mg m3
a = 6.1720 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5616 (3) ÅCell parameters from 326 reflections
c = 9.9216 (4) Åθ = 2.8–26.0°
α = 100.562 (3)°µ = 0.31 mm1
β = 99.821 (3)°T = 295 K
γ = 102.279 (4)°Block, colourless
V = 434.07 (3) Å30.25 × 0.20 × 0.18 mm
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
1717 independent reflections
Radiation source: Enhance (Mo) X-ray Source1546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 77
Tmin = 0.928, Tmax = 0.947k = 99
9718 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1805P]
where P = (Fo2 + 2Fc2)/3
1717 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C5H8N3+·H2PO4γ = 102.279 (4)°
Mr = 207.13V = 434.07 (3) Å3
Triclinic, P1Z = 2
a = 6.1720 (2) ÅMo Kα radiation
b = 7.5616 (3) ŵ = 0.31 mm1
c = 9.9216 (4) ÅT = 295 K
α = 100.562 (3)°0.25 × 0.20 × 0.18 mm
β = 99.821 (3)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
1717 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1546 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.947Rint = 0.027
9718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.21 e Å3
1717 reflectionsΔρmin = 0.34 e Å3
125 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1136 (3)0.3869 (2)1.11795 (16)0.0405 (5)
N20.0464 (2)0.1740 (2)0.90738 (15)0.0332 (4)
N30.3480 (2)0.2530 (2)0.99937 (15)0.0326 (4)
C10.1379 (3)0.2712 (2)1.00803 (17)0.0293 (5)
C20.0146 (3)0.0613 (2)0.79698 (18)0.0341 (5)
C30.2007 (3)0.0371 (3)0.7852 (2)0.0407 (6)
C40.3796 (3)0.1362 (3)0.88869 (19)0.0386 (6)
C50.2202 (4)0.0381 (3)0.6843 (2)0.0507 (7)
P10.28422 (7)0.48498 (6)0.64883 (4)0.0283 (1)
O10.0685 (2)0.31898 (17)0.59152 (14)0.0418 (4)
O20.4901 (2)0.39299 (18)0.64980 (12)0.0365 (4)
O30.2949 (2)0.5709 (2)0.79898 (13)0.0439 (4)
O40.29115 (19)0.61556 (16)0.55043 (13)0.0336 (4)
H1N0.230600.449201.182400.0490*
H2N0.019300.400201.125100.0490*
H30.219600.044700.708300.0490*
H3N0.464 (4)0.319 (3)1.071 (2)0.048 (6)*
H40.525000.123900.883800.0460*
H5A0.318900.126200.719500.0760*
H5B0.175000.102100.605200.0760*
H5C0.298900.050200.655800.0760*
H10.033700.354200.548500.0630*
H20.532400.392800.575800.0550*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0258 (7)0.0530 (9)0.0348 (8)0.0121 (7)0.0011 (6)0.0069 (7)
N20.0252 (7)0.0384 (8)0.0319 (7)0.0049 (6)0.0049 (6)0.0030 (6)
N30.0238 (7)0.0423 (8)0.0309 (7)0.0087 (6)0.0047 (6)0.0069 (6)
C10.0241 (8)0.0338 (8)0.0303 (8)0.0081 (6)0.0052 (6)0.0081 (7)
C20.0327 (9)0.0334 (8)0.0331 (9)0.0033 (7)0.0079 (7)0.0048 (7)
C30.0410 (10)0.0435 (10)0.0373 (10)0.0132 (8)0.0140 (8)0.0003 (8)
C40.0315 (9)0.0494 (10)0.0403 (10)0.0173 (8)0.0134 (8)0.0103 (8)
C50.0393 (11)0.0546 (12)0.0424 (11)0.0023 (9)0.0047 (8)0.0077 (9)
P10.0201 (2)0.0388 (3)0.0242 (2)0.0076 (2)0.0030 (2)0.0046 (2)
O10.0294 (7)0.0421 (7)0.0492 (8)0.0029 (5)0.0041 (6)0.0177 (6)
O20.0300 (6)0.0563 (8)0.0293 (6)0.0201 (6)0.0081 (5)0.0126 (6)
O30.0298 (7)0.0705 (9)0.0280 (7)0.0165 (6)0.0057 (5)0.0015 (6)
O40.0238 (6)0.0396 (6)0.0379 (7)0.0078 (5)0.0066 (5)0.0106 (5)
Geometric parameters (Å, º) top
P1—O31.4964 (13)N1—H2N0.8600
P1—O11.5623 (14)N1—H1N0.8600
P1—O21.5725 (14)N3—H3N0.90 (2)
P1—O41.5098 (13)C2—C51.492 (3)
O1—H10.8200C2—C31.401 (3)
O2—H20.8200C3—C41.347 (3)
N1—C11.319 (2)C3—H30.9300
N2—C21.329 (2)C4—H40.9300
N2—C11.349 (2)C5—H5C0.9600
N3—C11.348 (2)C5—H5A0.9600
N3—C41.347 (2)C5—H5B0.9600
P1···H3Ni2.89 (2)C2···C1ix3.481 (2)
P1···H2Nii3.1000C2···O13.099 (2)
P1···H1iii2.8900C3···O13.257 (2)
P1···H1Ni3.0600C4···O23.395 (2)
P1···H2iv2.8800C5···O13.277 (3)
O1···C33.257 (2)C5···H4viii2.9800
O1···C53.277 (3)H1···P1iii2.8900
O1···O4iii2.6100 (18)H1···O4iii1.8000
O1···C23.099 (2)H1···H1iii2.5500
O2···N1i3.000 (2)H1N···H2i2.5200
O2···C43.395 (2)H1N···H3N2.2400
O2···O4iv2.5843 (17)H1N···P1i3.0600
O3···N1ii2.845 (2)H1N···O2i2.1400
O3···N3i2.6276 (19)H2···O4iv1.8000
O4···O1iii2.6100 (18)H2···H1Ni2.5200
O4···O2iv2.5843 (17)H2···H2iv2.4500
O1···H5Bv2.5800H2···P1iv2.8800
O2···H1Ni2.1400H2N···P1ii3.1000
O3···H3Ni1.73 (2)H2N···O3ii2.0100
O3···H2Nii2.0100H3···O4x2.9100
O4···H2iv1.8000H3···H5B2.3900
O4···H1iii1.8000H3N···H1N2.2400
O4···H3vi2.9100H3N···P1i2.89 (2)
O4···H5Avii2.8000H3N···O3i1.73 (2)
N1···O2i3.000 (2)H4···N2xi2.5500
N1···O3ii2.845 (2)H4···C5xi2.9800
N3···O3i2.6276 (19)H5A···O4xii2.8000
N2···H4viii2.5500H5B···H32.3900
C1···C2ix3.481 (2)H5B···O1v2.5800
O3—P1—O4115.79 (8)N2—C1—N3121.54 (15)
O1—P1—O3109.84 (8)N2—C2—C3122.14 (16)
O1—P1—O4109.55 (7)N2—C2—C5116.73 (17)
O1—P1—O2104.78 (7)C3—C2—C5121.13 (17)
O2—P1—O4110.13 (7)C2—C3—C4117.84 (18)
O2—P1—O3106.13 (7)N3—C4—C3120.03 (18)
P1—O1—H1109.00C2—C3—H3121.00
P1—O2—H2109.00C4—C3—H3121.00
C1—N2—C2117.90 (15)C3—C4—H4120.00
C1—N3—C4120.52 (15)N3—C4—H4120.00
H1N—N1—H2N120.00C2—C5—H5B109.00
C1—N1—H1N120.00C2—C5—H5C109.00
C1—N1—H2N120.00C2—C5—H5A109.00
C1—N3—H3N117.5 (15)H5A—C5—H5C109.00
C4—N3—H3N121.9 (15)H5B—C5—H5C109.00
N1—C1—N3118.80 (16)H5A—C5—H5B110.00
N1—C1—N2119.66 (17)
C2—N2—C1—N1178.81 (15)C4—N3—C1—N20.1 (2)
C2—N2—C1—N31.3 (2)C1—N3—C4—C30.3 (3)
C1—N2—C2—C32.1 (2)N2—C2—C3—C41.7 (3)
C1—N2—C2—C5177.38 (16)C5—C2—C3—C4177.75 (19)
C4—N3—C1—N1179.98 (18)C2—C3—C4—N30.4 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x1, y, z; (ix) x, y, z+2; (x) x, y1, z; (xi) x+1, y, z; (xii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4iii0.821.802.6100 (18)168
N1—H1N···O2i0.862.143.000 (2)177
O2—H2···O4iv0.821.802.5843 (17)161
N1—H2N···O3ii0.862.012.845 (2)163
N3—H3N···O3i0.90 (2)1.73 (2)2.6276 (19)173 (2)
C4—H4···N2xi0.932.553.463 (2)166
C5—H5B···O1v0.962.583.531 (3)171
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1; (xi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC5H8N3+·H2PO4
Mr207.13
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.1720 (2), 7.5616 (3), 9.9216 (4)
α, β, γ (°)100.562 (3), 99.821 (3), 102.279 (4)
V3)434.07 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.928, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
9718, 1717, 1546
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.08
No. of reflections1717
No. of parameters125
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis PRO (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
P1—O31.4964 (13)N2—C21.329 (2)
P1—O11.5623 (14)N2—C11.349 (2)
P1—O21.5725 (14)N3—C11.348 (2)
P1—O41.5098 (13)N3—C41.347 (2)
N1—C11.319 (2)
O3—P1—O4115.79 (8)C1—N3—C4120.52 (15)
O1—P1—O3109.84 (8)N1—C1—N3118.80 (16)
O1—P1—O4109.55 (7)N1—C1—N2119.66 (17)
O1—P1—O2104.78 (7)N2—C1—N3121.54 (15)
O2—P1—O4110.13 (7)N2—C2—C3122.14 (16)
O2—P1—O3106.13 (7)N2—C2—C5116.73 (17)
C1—N2—C2117.90 (15)N3—C4—C3120.03 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.82001.80002.6100 (18)168.00
N1—H1N···O2ii0.86002.14003.000 (2)177.00
O2—H2···O4iii0.82001.80002.5843 (17)161.00
N1—H2N···O3iv0.86002.01002.845 (2)163.00
N3—H3N···O3ii0.90 (2)1.73 (2)2.6276 (19)173 (2)
C4—H4···N2v0.93002.55003.463 (2)166.00
C5—H5B···O1vi0.96002.58003.531 (3)171.00
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2; (v) x+1, y, z; (vi) x, y, z+1.
 

Acknowledgements

SPT thanks UGC for an SRF, JS thanks UGC for research funding. SPT and SJ acknowledge Professor T. N. Guru Row for his support and XRD facility at IISc.

References

First citationAakeroy, C. B., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837–846.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaile, S. M., Boysen, D. A., Chisholm, C. R. I. & Merle, R. B. (2001). Nature, 410, 910–913.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHossain, M. A., Muhammet, I. K., Avijit, P., Musabbir, A. S. & Frank, R. F. (2012). Cryst. Growth Des. 12, 567–571.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, S. J., Zhang, A. D. & Wang, H. T. (1993). Chem. Reagents, 15, 181–182.  CAS Google Scholar
First citationZhu, W., Liu, X. & Wang, H. (2008). Acta Opt. Sin. 28, 1155–1160.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds