organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o510-o511

3,5-Dimeth­­oxy-4′-methyl­biphen­yl

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, bVTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and cMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
*Correspondence e-mail: sami.nummelin@aalto.fi

(Received 27 February 2013; accepted 3 March 2013; online 9 March 2013)

The title compound, C15H16O2, crystallizes with three independent mol­ecules in the asymmetric unit. The intra­molecular torsion angle between the aromatic rings of each mol­ecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the mol­ecules forms wave-like layers along the b and c axes. The mol­ecules are connected via extensive meth­oxy–phenyl C—H⋯π inter­actions. A weak C—H⋯O hydrogen-bonding network also exists between meth­oxy O atoms and aromatic or meth­oxy H atoms.

Related literature

For discussion of hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For similar structures, see: Nakagawa et al. (1984[Nakagawa, F., Takahashi, S., Naito, A., Sato, S., Iwabuchi, S. & Tamura, C. (1984). J. Antibiot. 37, 10-12.]); Pandi et al. (2000[Pandi, A. S., Velmurugan, D., Kumar, V. R., Ramakrishnan, V. T., Sundararaj, S. S. & Fun, H.-K. (2000). Cryst. Res. Technol. 35, 1373-1381.]); Lahtinen et al. (2013a[Lahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383.],b[Lahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460.]). For details of the synthesis, see: Dol et al. (1998[Dol, G. C., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1998). Eur. J. Org. Chem. pp. 359-364.]); Percec et al. (2006[Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216-6241.]). The Suzuki–Miyaura cross-coupling reaction (Miyaura & Suzuki, 1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]) is widely used for the synthesis of biphenyls and related biaryl structures in organic, polymer, and supra­molecular chemistry. Such structures are frequently used as building blocks for e.g. precursors to liquid crystals (Solladié & Zimmermann 1984[Solladié, G. & Zimmermann, R. G. (1984). Angew. Chem. Int. Ed. Engl. 23, 348-362.]), supra­molecular polymers (Brunsveld et al. 2001[Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071-4098.]), dendritic mol­ecules (Nummelin et al. 2000[Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1-67.]) as well as Percec-type self-assembling biphenyl dendrons (Percec et al., 2006[Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216-6241.], 2007[Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989-4007.]; Rosen et al., 2009[Rosen, B. M., Wilson, D. A., Wilson, C. J., Peterca, M., Won, B. C., Huang, C., Lipski, L. R., Zeng, X., Ungar, G., Heiney, P. A. & Percec, V. (2009). J. Am. Chem. Soc. 131, 17500-17521.], 2010[Rosen, B. M., Peterca, M., Huang, C. H., Zeng, X. B., Ungar, G. & Percec, V. (2010). Angew. Chem. Int. Ed. 49, 7002-7005.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O2

  • Mr = 228.28

  • Orthorhombic, P 21 21 21

  • a = 7.16505 (18) Å

  • b = 15.3511 (4) Å

  • c = 33.3834 (8) Å

  • V = 3671.88 (16) Å3

  • Z = 12

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 123 K

  • 0.31 × 0.07 × 0.04 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.900, Tmax = 0.979

  • 8494 measured reflections

  • 5862 independent reflections

  • 5181 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.04

  • 5862 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2062 Friedel pairs

  • Flack parameter: 0.09 (19)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg6 are the centroids of C26–C31, C2–C7, C33–C38, C20–C25, C8–C13 and C26–C31 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯O15i 0.95 2.40 3.321 (2) 164
C25—H25⋯O51ii 0.95 2.84 3.459 (3) 124
C24—H24⋯O17iii 0.95 2.91 3.703 (3) 141
C16—H16A⋯O34iv 0.98 2.68 3.521 (3) 143
C52—H52A⋯O17v 0.98 2.63 3.398 (3) 136
C18—H18ACg1iii 0.98 2.89 3.686 (3) 142
C16—H16CCg2iv 0.98 2.62 3.366 (3) 139
C33—H33BCg3iii 0.98 3.05 3.476 (3) 115
C52—H52BCg4v 0.98 2.77 3.424 (3) 134
C35—H35CCg5iii 0.98 2.77 3.639 (3) 146
C35—H35BCg5 0.98 2.78 3.563 (3) 143
C18—H18CCg6vi 0.98 2.75 3.663 (3) 148
Symmetry codes: (i) [-x-2, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) x+1, y-1, z; (iii) x+1, y, z; (iv) [-x-2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) x, y+1, z; (vi) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The Suzuki-Miyaura cross-coupling reaction (Miyaura & Suzuki 1995) is widely used for the synthesis of biphenyls and related biaryl structures in organic, polymer, and supramolecular chemistry. Such structures are frequently used as building blocks for e.g precursors to liquid crystals (Solladié & Zimmermann 1984), supramolecular polymers (Brunsveld et al. 2001), dendritic molecules (Nummelin et al. 2000), and recently, Percec-type self-assembling supramolecular dendrimers (Percec et al. 2006, 2007; Rosen et al. 2009, 2010). Herein we report the crystal structure of title compound 3,5-dimethoxy-4'-methylbiphenyl (I) as a contribution to a structural study of biphenyl derivatives.

The compound (I) crystallizes in orthorhombic P212121 (No. 19) spacegroup without any solvent molecules. The asymmetric unit is consisted of three crystallographically independent but conformationally quite similar molecules (Figure 1). Major difference in conformation can be found in the orientation of one of the methoxy groups as can be seen in Figure 2. The intramolecular dihedral angles between the phenyl rings are -36.4 (3)° [C(4)–C(5)–C(8)–C(9)], 41.3 (3)° [C(22)–C(23)–C(26)–C(27)], and -37.8 (3)° [C(39)–C(40)–C(43)–C(44)], respectively. The complicated packing scheme of molecules form wave-like layers (layer on b- and c-axes) that are packed along a-axis (Figure 3). On each wave-like layer, molecules are orientated by 90° turns in a sequence of three crystallographically independent molecules (Figure 4). Extensive network of C–H···π and ππ interactions occur between methoxy groups and neighboring phenyl groups and between the phenyl rings (Figure 5) with distances varying from 3.366 (3) to 3.686 (3) Å and from 4.8418 (11) to 4.9137 (12) Å, respectively (Table 1). Also weak C–H···O hydrogen bond networks (Steiner 2002) exist between the methoxy groups of 3,5-dimethoxyphenyl rings and neighbouring hydrogen atoms located either on methoxy groups or in aromatic rings with D···A distances varying from 3.321 (2) to 3.703 (3) Å.

Related literature top

For discussion of hydrogen bonding, see: Steiner (2002). For similar structures, see: Nakagawa et al. (1984); Pandi et al. (2000); Lahtinen et al. (2013a,b). For details of the synthesis, see: Dol et al. (1998); Percec et al. (2006). The Suzuki–Miyaura cross-coupling reaction (Miyaura & Suzuki, 1995) is widely used for the synthesis of biphenyls and related biaryl structures in organic, polymer, and supramolecular chemistry. Such structures are frequently used as building blocks for e.g. precursors to liquid crystals (Solladié & Zimmermann 1984), supramolecular polymers (Brunsveld et al. 2001), dendritic molecules (Nummelin et al. 2000) as well as Percec-type self-assembling biphenyl dendrons (Percec et al., 2006, 2007; Rosen et al., 2009, 2010).

Experimental top

A flame dried Schlenk-tube was charged with 4-methylphenylboronic acid (6.00 g, 44.13 mmol), potassium fluoride (5.13 g, 88.30 mmol), 1-chloro-3,5-dimethoxybenzene (5.08 g, 29.43 mmol), Pd(OAc)2 (66 mg, 0.29 mmol, 1.0 mol%) and 2-(di-tert-butylphosphino)biphenyl (176 mg, 0.59 mmol, 2.0 mol%). The flask was sealed with a teflon screwcap, evacuated/backfilled with argon five times. Then dry, degassed THF (40 ml) was added via syringe. The reaction mixture was stirred at ambient temperature until the aryl chloride had been completely consumed as judged by GC analysis. The mixture was diluted with ether, filtered, and washed with 1 M NaOH. The aqueous layer was extracted with ether, the combined organic layer was washed with brine and dried with MgSO4. After evaporation the crude material was purified by flash column chromatography: silica gel/CH2Cl2. The solvent was evaporated and the product was re-crystallized from EtOH affording 6.40 g (95%) of a white crystalline solid. Crystals suitable for a single-crystal structure determination were obtained from a slow evaporation of ethanol.

Refinement top

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Overlay of three crystallographically disctinct molecules of an asymmetric unit.
[Figure 3] Fig. 3. Packing of molecules along b- and c -axes, showing stacking of wave-like layers of molecules.
[Figure 4] Fig. 4. Packing order of crystallographically independent molecules on a single wave-like layer.
[Figure 5] Fig. 5. Extensive C–H···π and ππ interaction network shown along b-axis.
3,5-Dimethoxy-4'-methylbiphenyl top
Crystal data top
C15H16O2Dx = 1.239 Mg m3
Mr = 228.28Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 4358 reflections
a = 7.16505 (18) Åθ = 4.0–76.3°
b = 15.3511 (4) ŵ = 0.64 mm1
c = 33.3834 (8) ÅT = 123 K
V = 3671.88 (16) Å3Rod, colourless
Z = 120.31 × 0.07 × 0.04 mm
F(000) = 1464
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
5862 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5181 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 5.1977 pixels mm-1θmax = 68.0°, θmin = 3.9°
ω scansh = 88
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 1218
Tmin = 0.900, Tmax = 0.979l = 3540
8494 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.004
S = 1.04Δρmax = 0.21 e Å3
5862 reflectionsΔρmin = 0.22 e Å3
470 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00022 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2062 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (19)
Crystal data top
C15H16O2V = 3671.88 (16) Å3
Mr = 228.28Z = 12
Orthorhombic, P212121Cu Kα radiation
a = 7.16505 (18) ŵ = 0.64 mm1
b = 15.3511 (4) ÅT = 123 K
c = 33.3834 (8) Å0.31 × 0.07 × 0.04 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
5862 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
5181 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.979Rint = 0.028
8494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.22 e Å3
5862 reflectionsAbsolute structure: Flack (1983), 2062 Friedel pairs
470 parametersAbsolute structure parameter: 0.09 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O320.6581 (3)0.00455 (9)0.13539 (4)0.0257 (3)
O151.2140 (2)0.53532 (9)0.24070 (4)0.0230 (3)
O171.1815 (3)0.31557 (9)0.14009 (4)0.0256 (3)
O340.7204 (2)0.24734 (10)0.21097 (4)0.0257 (3)
O511.1549 (3)0.51057 (9)0.07803 (4)0.0258 (3)
C481.1888 (3)0.36199 (13)0.09024 (6)0.0203 (4)
H481.20700.37610.11770.024*
C310.6807 (3)0.26527 (13)0.13890 (6)0.0195 (4)
H310.68430.32700.14070.023*
O491.1295 (3)0.30941 (10)0.03053 (4)0.0287 (4)
C81.2439 (3)0.30112 (13)0.24971 (6)0.0179 (4)
C111.1978 (3)0.42464 (13)0.18851 (6)0.0188 (4)
H111.18330.46650.16780.023*
C461.1387 (3)0.40899 (14)0.02203 (6)0.0233 (4)
H461.11890.45410.00300.028*
C441.1719 (3)0.25491 (14)0.03740 (6)0.0206 (4)
H441.17630.19600.02880.025*
C131.2266 (3)0.27383 (13)0.20985 (6)0.0187 (4)
H131.23120.21360.20350.022*
C230.6510 (3)0.27891 (13)0.06500 (6)0.0196 (4)
C451.1468 (3)0.32131 (15)0.00984 (6)0.0224 (4)
C350.7262 (4)0.34030 (14)0.21533 (6)0.0276 (5)
H35A0.75260.35510.24330.041*
H35B0.82450.36420.19810.041*
H35C0.60550.36510.20750.041*
C101.2146 (3)0.45040 (13)0.22815 (6)0.0191 (4)
C300.6954 (3)0.21431 (14)0.17353 (6)0.0207 (4)
C280.6658 (3)0.08472 (13)0.13408 (6)0.0211 (4)
C361.2425 (4)0.00048 (14)0.19728 (7)0.0307 (5)
H36A1.12370.00510.21170.046*
H36B1.34260.01270.21630.046*
H36C1.26940.05580.18380.046*
C21.2986 (3)0.10882 (13)0.34317 (6)0.0221 (4)
C51.2669 (3)0.23535 (12)0.28198 (6)0.0174 (4)
C431.1908 (3)0.27539 (14)0.07817 (6)0.0201 (4)
C260.6609 (3)0.22480 (13)0.10173 (6)0.0200 (4)
C270.6522 (3)0.13359 (13)0.09919 (6)0.0203 (4)
H270.63710.10570.07400.024*
C91.2396 (3)0.38929 (13)0.25875 (6)0.0197 (4)
H91.25360.40810.28570.024*
C381.1136 (3)0.06328 (14)0.13330 (6)0.0239 (5)
H381.03950.01240.13030.029*
C290.6881 (3)0.12423 (14)0.17108 (6)0.0223 (4)
H290.69830.08980.19460.027*
C391.1042 (3)0.12794 (14)0.10462 (6)0.0208 (4)
H391.02630.12000.08190.025*
C210.7427 (3)0.30780 (14)0.00358 (6)0.0235 (4)
H210.80700.28960.02700.028*
C61.3671 (3)0.15842 (13)0.27573 (6)0.0201 (4)
H61.42610.14850.25070.024*
C31.2022 (3)0.18594 (13)0.34947 (6)0.0206 (4)
H31.14730.19650.37490.025*
C250.5491 (3)0.40961 (14)0.03083 (7)0.0236 (5)
H250.47990.46240.03120.028*
C240.5494 (3)0.35747 (13)0.06463 (6)0.0204 (4)
H240.48090.37470.08770.025*
C401.2074 (3)0.20496 (13)0.10848 (6)0.0194 (4)
C41.1841 (3)0.24814 (13)0.31951 (6)0.0197 (4)
H41.11480.29980.32450.024*
C501.1437 (4)0.22174 (15)0.04516 (6)0.0280 (5)
H50A1.04890.18540.03210.042*
H50B1.26810.19870.03910.042*
H50C1.12370.22120.07420.042*
C200.6471 (3)0.38717 (14)0.00367 (6)0.0246 (4)
C411.3212 (3)0.21389 (13)0.14206 (6)0.0207 (4)
H411.39190.26570.14550.025*
C220.7454 (3)0.25507 (14)0.03023 (6)0.0236 (5)
H220.81290.20180.02960.028*
C471.1602 (3)0.42827 (14)0.06234 (6)0.0214 (4)
C181.1755 (4)0.22542 (13)0.12935 (6)0.0248 (5)
H18A1.07260.19690.14360.037*
H18B1.15630.22000.10040.037*
H18C1.29370.19760.13680.037*
C121.2028 (3)0.33505 (13)0.17976 (6)0.0193 (4)
C371.2300 (3)0.07136 (13)0.16657 (6)0.0212 (4)
C421.3328 (3)0.14800 (14)0.17063 (6)0.0227 (4)
H421.41200.15540.19320.027*
C161.1429 (3)0.59988 (13)0.21377 (6)0.0249 (5)
H16A1.13820.65640.22740.037*
H16B1.22480.60410.19030.037*
H16C1.01700.58340.20510.037*
C330.6269 (4)0.05009 (13)0.09882 (7)0.0270 (5)
H33A0.63590.11290.10360.041*
H33B0.50230.03600.08860.041*
H33C0.72110.03260.07910.041*
C71.3810 (3)0.09623 (14)0.30590 (7)0.0236 (5)
H71.44830.04400.30090.028*
C521.0702 (4)0.57706 (15)0.05435 (7)0.0284 (5)
H52A1.05710.63020.07040.043*
H52B0.94670.55760.04550.043*
H52C1.14850.58910.03090.043*
C11.3141 (4)0.04042 (15)0.37556 (7)0.0313 (5)
H1A1.21360.00230.37240.047*
H1B1.43500.01100.37340.047*
H1C1.30360.06820.40190.047*
C190.6454 (4)0.44453 (18)0.04011 (7)0.0378 (6)
H19A0.52220.44190.05280.057*
H19B0.67240.50470.03220.057*
H19C0.74050.42440.05910.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O320.0337 (9)0.0178 (7)0.0256 (7)0.0004 (7)0.0006 (7)0.0008 (6)
O150.0326 (9)0.0153 (6)0.0210 (7)0.0011 (7)0.0057 (6)0.0012 (5)
O170.0373 (9)0.0223 (7)0.0172 (6)0.0002 (7)0.0014 (7)0.0015 (6)
O340.0337 (9)0.0237 (7)0.0197 (7)0.0028 (7)0.0015 (7)0.0025 (6)
O510.0322 (9)0.0180 (7)0.0273 (7)0.0013 (7)0.0057 (7)0.0014 (6)
C480.0191 (10)0.0235 (10)0.0185 (9)0.0014 (9)0.0003 (8)0.0002 (8)
C310.0174 (10)0.0167 (8)0.0244 (9)0.0024 (8)0.0015 (8)0.0010 (8)
O490.0370 (10)0.0308 (8)0.0184 (7)0.0024 (8)0.0023 (7)0.0006 (6)
C80.0128 (9)0.0209 (9)0.0200 (9)0.0006 (8)0.0017 (8)0.0015 (8)
C110.0159 (10)0.0195 (9)0.0210 (9)0.0010 (8)0.0006 (8)0.0039 (8)
C460.0215 (11)0.0249 (10)0.0234 (10)0.0008 (9)0.0015 (9)0.0046 (8)
C440.0179 (10)0.0234 (10)0.0204 (10)0.0006 (8)0.0013 (8)0.0024 (8)
C130.0187 (10)0.0164 (9)0.0211 (9)0.0010 (8)0.0019 (8)0.0009 (8)
C230.0171 (10)0.0193 (9)0.0224 (9)0.0008 (9)0.0000 (8)0.0021 (8)
C450.0179 (10)0.0319 (11)0.0174 (9)0.0003 (9)0.0002 (8)0.0013 (9)
C350.0298 (12)0.0283 (11)0.0246 (10)0.0031 (10)0.0030 (9)0.0075 (9)
C100.0162 (10)0.0165 (9)0.0246 (10)0.0004 (8)0.0019 (8)0.0003 (8)
C300.0174 (10)0.0249 (10)0.0196 (9)0.0004 (9)0.0014 (8)0.0017 (8)
C280.0162 (10)0.0196 (9)0.0276 (10)0.0003 (8)0.0017 (9)0.0001 (8)
C360.0411 (15)0.0238 (10)0.0272 (11)0.0018 (11)0.0023 (10)0.0035 (9)
C20.0215 (11)0.0207 (10)0.0240 (9)0.0045 (9)0.0022 (9)0.0031 (8)
C50.0169 (10)0.0155 (8)0.0200 (9)0.0021 (8)0.0011 (8)0.0003 (8)
C430.0173 (9)0.0238 (10)0.0193 (9)0.0014 (9)0.0013 (8)0.0002 (8)
C260.0163 (10)0.0214 (9)0.0223 (9)0.0017 (9)0.0020 (8)0.0003 (8)
C270.0199 (10)0.0216 (10)0.0194 (9)0.0016 (9)0.0014 (8)0.0032 (8)
C90.0227 (10)0.0214 (9)0.0148 (8)0.0005 (9)0.0010 (8)0.0006 (8)
C380.0263 (11)0.0183 (9)0.0271 (11)0.0018 (9)0.0039 (9)0.0021 (9)
C290.0193 (10)0.0253 (10)0.0223 (9)0.0025 (9)0.0015 (9)0.0024 (8)
C390.0217 (11)0.0215 (10)0.0192 (9)0.0014 (9)0.0008 (8)0.0031 (8)
C210.0234 (11)0.0271 (10)0.0199 (9)0.0019 (9)0.0026 (8)0.0035 (8)
C60.0198 (10)0.0198 (9)0.0206 (9)0.0005 (9)0.0017 (8)0.0009 (8)
C30.0214 (11)0.0237 (10)0.0168 (9)0.0026 (9)0.0009 (8)0.0006 (8)
C250.0248 (11)0.0194 (10)0.0267 (11)0.0021 (9)0.0041 (9)0.0018 (9)
C240.0197 (10)0.0192 (10)0.0224 (10)0.0006 (9)0.0012 (8)0.0035 (8)
C400.0209 (10)0.0186 (9)0.0188 (9)0.0012 (8)0.0043 (8)0.0025 (8)
C40.0206 (10)0.0182 (9)0.0203 (9)0.0018 (8)0.0011 (8)0.0005 (7)
C500.0285 (12)0.0354 (12)0.0202 (9)0.0014 (11)0.0021 (9)0.0042 (9)
C200.0233 (11)0.0262 (10)0.0243 (10)0.0050 (10)0.0044 (9)0.0027 (9)
C410.0214 (10)0.0185 (9)0.0223 (9)0.0001 (8)0.0025 (8)0.0013 (8)
C220.0262 (12)0.0224 (10)0.0223 (10)0.0028 (9)0.0003 (9)0.0025 (8)
C470.0171 (10)0.0211 (9)0.0261 (10)0.0015 (9)0.0016 (9)0.0004 (8)
C180.0307 (12)0.0222 (10)0.0214 (9)0.0003 (10)0.0015 (9)0.0042 (8)
C120.0159 (9)0.0235 (10)0.0186 (9)0.0034 (8)0.0007 (8)0.0017 (8)
C370.0217 (11)0.0195 (9)0.0223 (10)0.0034 (9)0.0043 (8)0.0006 (8)
C420.0236 (11)0.0266 (10)0.0178 (9)0.0034 (9)0.0012 (9)0.0002 (8)
C160.0279 (12)0.0158 (9)0.0311 (11)0.0018 (9)0.0089 (10)0.0044 (8)
C330.0321 (13)0.0186 (9)0.0304 (11)0.0005 (9)0.0027 (10)0.0024 (9)
C70.0230 (11)0.0188 (9)0.0292 (11)0.0045 (9)0.0002 (9)0.0001 (9)
C520.0297 (12)0.0204 (10)0.0351 (12)0.0008 (10)0.0064 (10)0.0031 (9)
C10.0345 (13)0.0281 (11)0.0313 (11)0.0005 (11)0.0011 (10)0.0086 (10)
C190.0400 (15)0.0429 (14)0.0306 (12)0.0002 (13)0.0005 (12)0.0098 (11)
Geometric parameters (Å, º) top
O32—C281.372 (3)C43—C401.486 (3)
O32—C331.424 (3)C26—C271.404 (3)
O15—C101.369 (2)C27—H270.9500
O15—C161.432 (2)C9—H90.9500
O17—C181.430 (2)C38—H380.9500
O17—C121.366 (2)C38—C391.381 (3)
O34—C351.435 (3)C38—C371.394 (3)
O34—C301.361 (3)C29—H290.9500
O51—C471.368 (3)C39—H390.9500
O51—C521.427 (3)C39—C401.400 (3)
C48—H480.9500C21—H210.9500
C48—C431.389 (3)C21—C201.398 (3)
C48—C471.394 (3)C21—C221.389 (3)
C31—H310.9500C6—H60.9500
C31—C301.400 (3)C6—C71.391 (3)
C31—C261.395 (3)C3—H30.9500
O49—C451.366 (3)C3—C41.389 (3)
O49—C501.435 (3)C25—H250.9500
C8—C131.401 (3)C25—C241.383 (3)
C8—C51.486 (3)C25—C201.392 (3)
C8—C91.387 (3)C24—H240.9500
C11—H110.9500C40—C411.393 (3)
C11—C101.386 (3)C4—H40.9500
C11—C121.406 (3)C50—H50A0.9800
C46—H460.9500C50—H50B0.9800
C46—C451.407 (3)C50—H50C0.9800
C46—C471.387 (3)C20—C191.502 (3)
C44—H440.9500C41—H410.9500
C44—C451.385 (3)C41—C421.393 (3)
C44—C431.403 (3)C22—H220.9500
C13—H130.9500C18—H18A0.9800
C13—C121.386 (3)C18—H18B0.9800
C23—C261.483 (3)C18—H18C0.9800
C23—C241.409 (3)C37—C421.395 (3)
C23—C221.392 (3)C42—H420.9500
C35—H35A0.9800C16—H16A0.9800
C35—H35B0.9800C16—H16B0.9800
C35—H35C0.9800C16—H16C0.9800
C10—C91.398 (3)C33—H33A0.9800
C30—C291.386 (3)C33—H33B0.9800
C28—C271.389 (3)C33—H33C0.9800
C28—C291.385 (3)C7—H70.9500
C36—H36A0.9800C52—H52A0.9800
C36—H36B0.9800C52—H52B0.9800
C36—H36C0.9800C52—H52C0.9800
C36—C371.508 (3)C1—H1A0.9800
C2—C31.386 (3)C1—H1B0.9800
C2—C71.391 (3)C1—H1C0.9800
C2—C11.511 (3)C19—H19A0.9800
C5—C61.397 (3)C19—H19B0.9800
C5—C41.400 (3)C19—H19C0.9800
C28—O32—C33117.98 (16)C5—C6—H6119.7
C10—O15—C16117.92 (16)C7—C6—C5120.57 (19)
C12—O17—C18117.26 (16)C7—C6—H6119.7
C30—O34—C35117.86 (17)C2—C3—H3119.2
C47—O51—C52117.42 (17)C2—C3—C4121.64 (19)
C43—C48—H48119.8C4—C3—H3119.2
C43—C48—C47120.40 (18)C24—C25—H25119.0
C47—C48—H48119.8C24—C25—C20122.1 (2)
C30—C31—H31120.2C20—C25—H25119.0
C26—C31—H31120.2C23—C24—H24119.9
C26—C31—C30119.57 (18)C25—C24—C23120.2 (2)
C45—O49—C50117.04 (17)C25—C24—H24119.9
C13—C8—C5119.70 (18)C39—C40—C43120.62 (19)
C9—C8—C13119.78 (18)C41—C40—C43121.57 (19)
C9—C8—C5120.53 (18)C41—C40—C39117.79 (18)
C10—C11—H11120.8C5—C4—H4119.7
C10—C11—C12118.35 (18)C3—C4—C5120.54 (19)
C12—C11—H11120.8C3—C4—H4119.7
C45—C46—H46120.7O49—C50—H50A109.5
C47—C46—H46120.7O49—C50—H50B109.5
C47—C46—C45118.7 (2)O49—C50—H50C109.5
C45—C44—H44120.3H50A—C50—H50B109.5
C45—C44—C43119.47 (19)H50A—C50—H50C109.5
C43—C44—H44120.3H50B—C50—H50C109.5
C8—C13—H13120.1C21—C20—C19121.1 (2)
C12—C13—C8119.77 (18)C25—C20—C21117.45 (19)
C12—C13—H13120.1C25—C20—C19121.4 (2)
C24—C23—C26120.77 (18)C40—C41—H41119.5
C22—C23—C26121.26 (19)C42—C41—C40120.98 (19)
C22—C23—C24117.94 (19)C42—C41—H41119.5
O49—C45—C46114.17 (19)C23—C22—H22119.4
O49—C45—C44124.7 (2)C21—C22—C23121.2 (2)
C44—C45—C46121.15 (19)C21—C22—H22119.4
O34—C35—H35A109.5O51—C47—C48114.98 (18)
O34—C35—H35B109.5O51—C47—C46124.4 (2)
O34—C35—H35C109.5C46—C47—C48120.6 (2)
H35A—C35—H35B109.5O17—C18—H18A109.5
H35A—C35—H35C109.5O17—C18—H18B109.5
H35B—C35—H35C109.5O17—C18—H18C109.5
O15—C10—C11124.29 (18)H18A—C18—H18B109.5
O15—C10—C9114.56 (18)H18A—C18—H18C109.5
C11—C10—C9121.13 (18)H18B—C18—H18C109.5
O34—C30—C31124.08 (19)O17—C12—C11114.36 (18)
O34—C30—C29115.53 (19)O17—C12—C13124.59 (18)
C29—C30—C31120.4 (2)C13—C12—C11121.05 (18)
O32—C28—C27124.28 (19)C38—C37—C36120.8 (2)
O32—C28—C29114.43 (19)C38—C37—C42117.93 (19)
C29—C28—C27121.29 (18)C42—C37—C36121.3 (2)
H36A—C36—H36B109.5C41—C42—C37121.0 (2)
H36A—C36—H36C109.5C41—C42—H42119.5
H36B—C36—H36C109.5C37—C42—H42119.5
C37—C36—H36A109.5O15—C16—H16A109.5
C37—C36—H36B109.5O15—C16—H16B109.5
C37—C36—H36C109.5O15—C16—H16C109.5
C3—C2—C7117.76 (19)H16A—C16—H16B109.5
C3—C2—C1121.4 (2)H16A—C16—H16C109.5
C7—C2—C1120.8 (2)H16B—C16—H16C109.5
C6—C5—C8121.55 (18)O32—C33—H33A109.5
C6—C5—C4118.02 (18)O32—C33—H33B109.5
C4—C5—C8120.41 (18)O32—C33—H33C109.5
C48—C43—C44119.65 (19)H33A—C33—H33B109.5
C48—C43—C40119.98 (18)H33A—C33—H33C109.5
C44—C43—C40120.35 (19)H33B—C33—H33C109.5
C31—C26—C23119.41 (18)C2—C7—C6121.5 (2)
C31—C26—C27120.16 (19)C2—C7—H7119.3
C27—C26—C23120.43 (18)C6—C7—H7119.3
C28—C27—C26119.00 (19)O51—C52—H52A109.5
C28—C27—H27120.5O51—C52—H52B109.5
C26—C27—H27120.5O51—C52—H52C109.5
C8—C9—C10119.91 (18)H52A—C52—H52B109.5
C8—C9—H9120.0H52A—C52—H52C109.5
C10—C9—H9120.0H52B—C52—H52C109.5
C39—C38—H38119.4C2—C1—H1A109.5
C39—C38—C37121.2 (2)C2—C1—H1B109.5
C37—C38—H38119.4C2—C1—H1C109.5
C30—C29—H29120.2H1A—C1—H1B109.5
C28—C29—C30119.6 (2)H1A—C1—H1C109.5
C28—C29—H29120.2H1B—C1—H1C109.5
C38—C39—H39119.4C20—C19—H19A109.5
C38—C39—C40121.1 (2)C20—C19—H19B109.5
C40—C39—H39119.4C20—C19—H19C109.5
C20—C21—H21119.4H19A—C19—H19B109.5
C22—C21—H21119.4H19A—C19—H19C109.5
C22—C21—C20121.1 (2)H19B—C19—H19C109.5
O32—C28—C27—C26179.7 (2)C9—C8—C5—C6145.2 (2)
O32—C28—C29—C30179.2 (2)C9—C8—C5—C436.4 (3)
O15—C10—C9—C8179.6 (2)C38—C39—C40—C43177.8 (2)
O34—C30—C29—C28179.04 (19)C38—C39—C40—C410.5 (3)
C48—C43—C40—C39140.4 (2)C38—C37—C42—C410.7 (3)
C48—C43—C40—C4137.8 (3)C29—C28—C27—C260.1 (3)
C31—C30—C29—C280.1 (4)C39—C38—C37—C36178.6 (2)
C31—C26—C27—C280.8 (3)C39—C38—C37—C421.8 (3)
C8—C13—C12—O17178.9 (2)C39—C40—C41—C420.5 (3)
C8—C13—C12—C110.8 (3)C6—C5—C4—C30.2 (3)
C8—C5—C6—C7177.6 (2)C3—C2—C7—C60.3 (3)
C8—C5—C4—C3178.69 (19)C24—C23—C26—C3140.2 (3)
C11—C10—C9—C81.4 (3)C24—C23—C26—C27140.4 (2)
C44—C43—C40—C3937.8 (3)C24—C23—C22—C211.2 (3)
C44—C43—C40—C41144.0 (2)C24—C25—C20—C211.9 (3)
C13—C8—C5—C634.7 (3)C24—C25—C20—C19180.0 (2)
C13—C8—C5—C4143.7 (2)C40—C41—C42—C370.4 (3)
C13—C8—C9—C101.2 (3)C4—C5—C6—C70.9 (3)
C23—C26—C27—C28178.7 (2)C50—O49—C45—C46177.7 (2)
C45—C46—C47—O51179.9 (2)C50—O49—C45—C441.8 (3)
C45—C46—C47—C480.2 (4)C20—C21—C22—C230.8 (4)
C45—C44—C43—C481.6 (3)C20—C25—C24—C230.1 (3)
C45—C44—C43—C40176.6 (2)C22—C23—C26—C31138.1 (2)
C35—O34—C30—C312.1 (3)C22—C23—C26—C2741.3 (3)
C35—O34—C30—C29179.1 (2)C22—C23—C24—C251.7 (3)
C10—C11—C12—O17178.73 (18)C22—C21—C20—C252.4 (3)
C10—C11—C12—C130.9 (3)C22—C21—C20—C19179.5 (2)
C30—C31—C26—C23178.2 (2)C47—C48—C43—C442.7 (3)
C30—C31—C26—C271.2 (3)C47—C48—C43—C40175.5 (2)
C36—C37—C42—C41179.7 (2)C47—C46—C45—O49178.2 (2)
C2—C3—C4—C51.4 (3)C47—C46—C45—C441.3 (4)
C5—C8—C13—C12179.2 (2)C18—O17—C12—C11176.9 (2)
C5—C8—C9—C10178.9 (2)C18—O17—C12—C132.8 (3)
C5—C6—C7—C20.8 (3)C12—C11—C10—O15179.3 (2)
C43—C48—C47—O51177.9 (2)C12—C11—C10—C91.2 (3)
C43—C48—C47—C461.8 (3)C37—C38—C39—C401.7 (3)
C43—C44—C45—O49179.0 (2)C16—O15—C10—C1117.5 (3)
C43—C44—C45—C460.4 (3)C16—O15—C10—C9164.4 (2)
C43—C40—C41—C42178.8 (2)C33—O32—C28—C272.6 (3)
C26—C31—C30—O34178.0 (2)C33—O32—C28—C29177.2 (2)
C26—C31—C30—C290.8 (3)C7—C2—C3—C41.4 (3)
C26—C23—C24—C25176.7 (2)C52—O51—C47—C48160.9 (2)
C26—C23—C22—C21177.1 (2)C52—O51—C47—C4618.8 (3)
C27—C28—C29—C300.6 (3)C1—C2—C3—C4178.5 (2)
C9—C8—C13—C120.9 (3)C1—C2—C7—C6179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg6 are the centroids of C26–C31, C2–C7, C33–C38, C20–C25, C8–C13 and C26–C31 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C29—H29···O15i0.952.403.321 (2)164
C25—H25···O51ii0.952.843.459 (3)124
C24—H24···O17iii0.952.913.703 (3)141
C16—H16A···O34iv0.982.683.521 (3)143
C52—H52A···O17v0.982.633.398 (3)136
C18—H18A···Cg1iii0.982.893.686 (3)142
C16—H16C···Cg2iv0.982.623.366 (3)139
C33—H33B···Cg3iii0.983.053.476 (3)115
C52—H52B···Cg4v0.982.773.424 (3)134
C35—H35C···Cg5iii0.982.773.639 (3)146
C35—H35B···Cg50.982.783.563 (3)143
C18—H18C···Cg6vi0.982.753.663 (3)148
Symmetry codes: (i) x2, y+1/2, z1/2; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x2, y1/2, z1/2; (v) x, y+1, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H16O2
Mr228.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)7.16505 (18), 15.3511 (4), 33.3834 (8)
V3)3671.88 (16)
Z12
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.31 × 0.07 × 0.04
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.900, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8494, 5862, 5181
Rint0.028
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.04
No. of reflections5862
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22
Absolute structureFlack (1983), 2062 Friedel pairs
Absolute structure parameter0.09 (19)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg6 are the centroids of C26–C31, C2–C7, C33–C38, C20–C25, C8–C13 and C26–C31 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C29—H29···O15i0.952.403.321 (2)164
C25—H25···O51ii0.952.843.459 (3)124
C24—H24···O17iii0.952.913.703 (3)141
C16—H16A···O34iv0.982.683.521 (3)143
C52—H52A···O17v0.982.633.398 (3)136
C18—H18A···Cg1iii0.982.893.686 (3)142
C16—H16C···Cg2iv0.982.623.366 (3)139
C33—H33B···Cg3iii0.983.053.476 (3)115
C52—H52B···Cg4v0.982.773.424 (3)134
C35—H35C···Cg5iii0.982.773.639 (3)146
C35—H35B···Cg50.982.783.563 (3)143
C18—H18C···Cg6vi0.982.753.663 (3)148
Symmetry codes: (i) x2, y+1/2, z1/2; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x2, y1/2, z1/2; (v) x, y+1, z; (vi) x1, y, z.
 

Acknowledgements

SN acknowledges the Academy of Finland for financial support (No. 138850).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
First citationBrunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4098.  Web of Science CrossRef PubMed CAS
First citationDol, G. C., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1998). Eur. J. Org. Chem. pp. 359–364.  CrossRef
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationLahtinen, M., Nättinen, K. & Nummelin, S. (2013a). Acta Cryst. E69, o383.  CSD CrossRef IUCr Journals
First citationLahtinen, M., Nättinen, K. & Nummelin, S. (2013b). Acta Cryst. E69, o460.  CSD CrossRef IUCr Journals
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS
First citationNakagawa, F., Takahashi, S., Naito, A., Sato, S., Iwabuchi, S. & Tamura, C. (1984). J. Antibiot. 37, 10–12.  CrossRef CAS PubMed
First citationNummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.  CrossRef CAS
First citationPandi, A. S., Velmurugan, D., Kumar, V. R., Ramakrishnan, V. T., Sundararaj, S. S. & Fun, H.-K. (2000). Cryst. Res. Technol. 35, 1373–1381.  CAS
First citationPercec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241.  Web of Science CrossRef PubMed CAS
First citationPercec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007.  Web of Science CrossRef PubMed CAS
First citationRosen, B. M., Peterca, M., Huang, C. H., Zeng, X. B., Ungar, G. & Percec, V. (2010). Angew. Chem. Int. Ed. 49, 7002–7005.  Web of Science CrossRef CAS
First citationRosen, B. M., Wilson, D. A., Wilson, C. J., Peterca, M., Won, B. C., Huang, C., Lipski, L. R., Zeng, X., Ungar, G., Heiney, P. A. & Percec, V. (2009). J. Am. Chem. Soc. 131, 17500–17521.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSolladié, G. & Zimmermann, R. G. (1984). Angew. Chem. Int. Ed. Engl. 23, 348–362.
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o510-o511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds