supplementary materials


hb7035 scheme

Acta Cryst. (2013). E69, m177-m178    [ doi:10.1107/S1600536813005230 ]

Poly[[diaquabis([mu]2-4,4'-bipyridyl)cobalt(II)] dinitrate tetrahydrate]

A. Lehleh, M. Boutebdja, A. Beghidja, C. Beghidja and H. Merazig

Abstract top

The title compound, {[Co(C10H8N2)2(H2O)2](NO3)2·4H2O}n, (C10H8N2 = 4,4'-bipyridine = 4,4'-bpy) is a layered coordination polymer built up from a cationic square grid extending in (101) enclosing uncoordinating nitrate ions and water molecules. The CoII ion has site symmetry 2 and one of the 4,4'-bpy ligands is generated by twofold symmetry [two N atoms and two C atoms lie on the rotation axis and the dihedral angle between the pyridine rings is 45.66 (5)°]. The other 4,4'-bpy ligand is generated by a crystallographic inversion center. The CoII ion exhibits a slightly distorted octahedral coordination geometry defined by two O atoms of two coordinating water molecules and four N atoms from four bridging 4,4'-bpy ligands. The structure is consolidated by O-H...O, C-H...O and C-H...N hydrogen bonds.

Comment top

The structure of (I) is a two dimensional layer with no interpenetration and no enclathration of organic guest molecules. The CoII atom being located on a twofold crystallographic axis, has slightly distorted octahedral geometry, being ligated by two aqua ligands [Co—O1w = 2.074 (10) Å] and four pyridil groups from 4,4'-bpy ligands (Fig. 1), with a distance Co—N in the range of 2.1898 (13) - 2.2306 (14) Å which is almost similar to that observed in {[{Co(H2O)2}(µ-4,4'-bpy)2][NO3]2. 2(4,4'-bpy).2H2O}n; {[{Co(H2O)2(4,4'-bpy)2}(µ-4,4'-bpy)]. 1.5[NO3].0.5OH. 2(4,4'-bpy).2.5H2O}n, Felloni et al. (2002) and {[Co(µ-4,4'-bpy)(4,4'-bpy)2(H2O)2].(OH)3.(NMe4).4,4'-bpy.4H2O}n, Jin et al. (2006), these last act as a bidentate bridging ligands giving rise to a 2-D square grid sheet of (4,4) topology lying in the (101) plane. The basal coordinated 4,4'-bpy is located on an inversion center, it is planar with a 0° interplanar angle between the two pyridil rings, the same thing is observed in {[Cd(4,4'-bpy)2(H2O)2]. (NO3)2.4H2O}n, Aoyagi et al. (2000), whereas the axially one is nonplanar with an angle of 45.60° between the pyridil rings. The dihedral angle between the two basal coordinated 4,4'-bpy molecules is 46.92°. Each layer features a perfectly planar, though slightly distorted, square with Co(II) atom and 4,4'-bpy at each corner and side, respectively (cis N—Co—N = 88.64 (2)°, 91.37 (2)°) (Fig. 2). The square cavity has dimensions of 11.54 × 11.59 Å, which are comparable to those of closely related compound {[Cd(4,4'-bpy)2(H2O)2].(NO3)2.2H2O}n, Tong et al. (2000). The nitrate ion and lattice water molecules are situated between the coordination layers and form extensive hydrogen bonds among the aqua ligands, 4,4'-bpy, uncoordinated water molecules and nitrate ion, which extend the two-dimensional coordination layers into a three-dimensional molecular network (Fig. 3).

Related literature top

For related 4,4' bpy structures, see: Aoyagi et al. (2000); Felloni et al. (2002); Jin et al. (2006); Tong et al. (2000).

Experimental top

A mixture of Co(NO3)2. 6H2O (0.291 g, 1 mmole), trans-cinnamic acid (0.148 g, 1 mmole), NaOH (0.04 g, 1 mmole) and 4,4'-bpy (0.156 g, 1 mmole) were dissolved with 10 ml of mixed solution (MeOH/H2O: 2/1) in a 20 ml Teflon-lined stainless steel reactor and heated to 120°C for 24 h. The reactor was cooled to room temperature over a period of 24 h, the reaction was filtered. The orange filtrate was kept for several weeks at room temperature. Orange crystals suitable for X-ray analysis were obtained. Note: the measured crystal is a fragment cut from a larger crystal.

Refinement top

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter 1.5 that of the adjacent oxygen atom. The O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 with Uiso(H) = 1.5 Ueq(O) and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. A l l other Hydrogen atoms were placed in calculated positions with C —H distances of 0.93–0.96 Å for aromatic H atoms with Uiso(H) =1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of a fragment of the title compound with displacement ellipsoids for non-H atoms are drawn at the 50% probability level. symmetry code: i = x,-1 + y,z; ii = x,1 + y,z; iii = 1 - x,-1 + y,1/2 - z; iv = 1 - x,y,1/2 - z; vi = 3/2 - x,1/2 - y,-z; vii = 1/2 + x,-1/2 - y,-1/2 + z; xii = 3/2 - x,1/2 - y,1/2 - z
[Figure 2] Fig. 2. ATOMS view of the square grids of the title compound
[Figure 3] Fig. 3. Partial view of the crystal structure of the title compound showing the hydrogen bonds
Poly[[diaquabis(µ2-4,4'-bipyridyl)cobalt(II)] dinitrate tetrahydrate] top
Crystal data top
[Co(C10H8N2)2(H2O)2](NO3)2·4H2OZ = 4
Mr = 603.41F(000) = 1252
Monoclinic, C2/cLeast Squares Treatment of 25 SET4 setting angles.
Hall symbol: -C 2ycDx = 1.546 Mg m3
a = 18.6093 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5447 (13) ŵ = 0.74 mm1
c = 12.1216 (13) ÅT = 296 K
β = 95.625 (4)°Block, orange
V = 2591.7 (5) Å30.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3660 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.016
Graphite monochromatorθmax = 30.5°, θmin = 3.7°
Detector resolution: 18.4 pixels mm-1h = 2626
φ and ω scansk = 1612
18421 measured reflectionsl = 1517
3942 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0411P)2 + 2.4609P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3942 reflectionsΔρmax = 0.41 e Å3
198 parametersΔρmin = 0.49 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (4)
Crystal data top
[Co(C10H8N2)2(H2O)2](NO3)2·4H2OV = 2591.7 (5) Å3
Mr = 603.41Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.6093 (19) ŵ = 0.74 mm1
b = 11.5447 (13) ÅT = 296 K
c = 12.1216 (13) Å0.15 × 0.12 × 0.10 mm
β = 95.625 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3660 reflections with I > 2σ(I)
18421 measured reflectionsRint = 0.016
3942 independent reflectionsθmax = 30.5°
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.41 e Å3
S = 1.05Δρmin = 0.49 e Å3
3942 reflectionsAbsolute structure: ?
198 parametersFlack parameter: ?
9 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.500000.74238 (2)0.750000.0160 (1)
O1W0.56526 (5)0.74192 (8)0.89887 (8)0.0261 (3)
N10.59538 (5)0.74697 (8)0.65303 (8)0.0194 (3)
N20.500000.93206 (11)0.750000.0198 (3)
N30.500001.54917 (12)0.750000.0216 (4)
C10.59232 (6)0.70962 (12)0.54799 (10)0.0261 (3)
C20.65075 (7)0.71019 (13)0.48560 (10)0.0286 (3)
C30.71766 (6)0.75068 (9)0.53140 (10)0.0196 (3)
C40.72032 (7)0.79164 (13)0.63952 (11)0.0289 (3)
C50.65925 (7)0.78805 (12)0.69653 (11)0.0282 (3)
C60.48157 (7)0.99302 (10)0.83731 (10)0.0229 (3)
C70.48067 (7)1.11296 (10)0.84048 (10)0.0237 (3)
C80.500001.17564 (13)0.750000.0189 (4)
C90.500001.30435 (13)0.750000.0191 (4)
C100.55676 (7)1.36752 (10)0.71325 (11)0.0266 (3)
C110.55528 (7)1.48777 (10)0.71687 (12)0.0277 (3)
O10.73251 (11)1.0878 (2)0.67235 (12)0.0843 (7)
O20.67234 (8)1.07423 (15)0.81345 (14)0.0629 (5)
O30.77569 (8)0.99156 (14)0.81568 (13)0.0614 (5)
N40.72726 (8)1.05039 (14)0.76769 (11)0.0436 (4)
O2W0.63340 (8)1.06829 (14)0.48099 (11)0.0546 (4)
O3W0.84438 (9)1.06853 (16)0.53876 (15)0.0701 (6)
H10.548400.681700.515200.0310*
H20.645300.683500.412900.0340*
H40.763200.821600.673800.0350*
H50.662900.815700.768900.0340*
H60.468800.952600.898800.0280*
H70.467201.151300.902700.0280*
H100.595501.329400.686400.0320*
H110.594801.528000.695100.0330*
H120.5930 (7)0.6840 (9)0.9229 (13)0.0240*
H130.5878 (8)0.8051 (9)0.9250 (13)0.0240*
H140.6676 (7)1.0786 (14)0.5353 (10)0.0240*
H150.6542 (8)1.0272 (13)0.4316 (10)0.0240*
H160.8124 (7)1.0682 (15)0.5868 (10)0.0240*
H170.8192 (8)1.0679 (15)0.4727 (8)0.0240*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0164 (1)0.0132 (1)0.0193 (1)0.00000.0057 (1)0.0000
O1W0.0236 (4)0.0290 (5)0.0255 (4)0.0002 (3)0.0014 (3)0.0015 (3)
N10.0188 (4)0.0167 (4)0.0240 (5)0.0001 (3)0.0084 (3)0.0002 (3)
N20.0233 (6)0.0136 (5)0.0232 (6)0.00000.0060 (5)0.0000
N30.0222 (6)0.0148 (6)0.0282 (7)0.00000.0046 (5)0.0000
C10.0183 (5)0.0369 (6)0.0238 (5)0.0031 (4)0.0053 (4)0.0024 (5)
C20.0208 (5)0.0456 (7)0.0203 (5)0.0038 (5)0.0062 (4)0.0054 (5)
C30.0175 (5)0.0210 (5)0.0215 (5)0.0001 (4)0.0075 (4)0.0002 (4)
C40.0213 (5)0.0377 (7)0.0291 (6)0.0080 (5)0.0095 (4)0.0131 (5)
C50.0246 (5)0.0341 (6)0.0278 (6)0.0069 (5)0.0116 (4)0.0125 (5)
C60.0321 (6)0.0160 (5)0.0219 (5)0.0013 (4)0.0090 (4)0.0009 (4)
C70.0344 (6)0.0160 (5)0.0220 (5)0.0016 (4)0.0099 (4)0.0022 (4)
C80.0210 (6)0.0135 (6)0.0227 (7)0.00000.0042 (5)0.0000
C90.0232 (7)0.0132 (6)0.0211 (6)0.00000.0032 (5)0.0000
C100.0257 (5)0.0161 (5)0.0401 (7)0.0027 (4)0.0136 (5)0.0021 (4)
C110.0256 (5)0.0168 (5)0.0428 (7)0.0001 (4)0.0133 (5)0.0036 (5)
O10.0952 (13)0.1202 (16)0.0372 (7)0.0386 (12)0.0056 (7)0.0049 (9)
O20.0435 (7)0.0741 (10)0.0729 (10)0.0014 (7)0.0144 (6)0.0011 (8)
O30.0455 (7)0.0733 (10)0.0632 (9)0.0023 (7)0.0057 (6)0.0158 (8)
N40.0410 (7)0.0553 (8)0.0341 (6)0.0193 (6)0.0017 (5)0.0078 (6)
O2W0.0554 (8)0.0676 (9)0.0402 (6)0.0282 (7)0.0015 (5)0.0039 (6)
O3W0.0645 (10)0.0731 (11)0.0726 (11)0.0275 (8)0.0065 (8)0.0237 (9)
Geometric parameters (Å, º) top
Co1—O1W2.0741 (10)N3—C111.3428 (15)
Co1—N12.2235 (10)C1—C21.3840 (17)
Co1—N22.1898 (13)C2—C31.3934 (17)
Co1—N3i2.2306 (14)C3—C41.3896 (18)
Co1—O1Wii2.0741 (10)C3—C3iii1.4860 (16)
Co1—N1ii2.2235 (10)C4—C51.3874 (19)
O1W—H130.884 (12)C6—C71.3854 (16)
O1W—H120.877 (12)C7—C81.3904 (14)
O1—N41.247 (2)C8—C91.486 (2)
O2—N41.241 (2)C9—C10ii1.3922 (15)
O3—N41.229 (2)C9—C101.3922 (15)
O2W—H140.878 (13)C10—C111.3893 (16)
O2W—H150.882 (14)C1—H10.9300
O3W—H170.887 (11)C2—H20.9300
O3W—H160.873 (13)C4—H40.9300
N1—C11.3402 (16)C5—H50.9300
N1—C51.3390 (16)C6—H60.9300
N2—C6ii1.3432 (14)C7—H70.9300
N2—C61.3432 (14)C10—H100.9300
N3—C11ii1.3428 (15)C11—H110.9300
O1W—Co1—N191.74 (4)C1—C2—C3120.21 (11)
O1W—Co1—N290.15 (3)C2—C3—C4115.96 (11)
O1W—Co1—N3i89.85 (3)C2—C3—C3iii121.97 (11)
O1W—Co1—O1Wii179.71 (4)C3iii—C3—C4122.07 (11)
O1W—Co1—N1ii88.27 (4)C3—C4—C5120.29 (12)
N1—Co1—N288.64 (2)N1—C5—C4123.59 (12)
N1—Co1—N3i91.37 (2)N2—C6—C7123.39 (11)
O1Wii—Co1—N188.27 (4)C6—C7—C8119.57 (11)
N1—Co1—N1ii177.27 (4)C7—C8—C9121.36 (7)
N2—Co1—N3i180.00C7ii—C8—C9121.36 (7)
O1Wii—Co1—N290.15 (3)C7—C8—C7ii117.28 (13)
N1ii—Co1—N288.64 (2)C8—C9—C10ii121.59 (7)
O1Wii—Co1—N3i89.85 (3)C8—C9—C10121.59 (7)
N1ii—Co1—N3i91.37 (2)C10—C9—C10ii116.82 (13)
O1Wii—Co1—N1ii91.74 (4)C9—C10—C11119.69 (12)
H12—O1W—H13105.5 (12)N3—C11—C10123.72 (12)
Co1—O1W—H12124.5 (9)N1—C1—H1118.00
Co1—O1W—H13121.8 (9)C2—C1—H1118.00
H14—O2W—H15104.3 (13)C1—C2—H2120.00
H16—O3W—H17105.5 (12)C3—C2—H2120.00
Co1—N1—C5121.61 (8)C5—C4—H4120.00
Co1—N1—C1122.19 (7)C3—C4—H4120.00
C1—N1—C5116.20 (10)C4—C5—H5118.00
Co1—N2—C6ii121.60 (7)N1—C5—H5118.00
C6—N2—C6ii116.81 (12)N2—C6—H6118.00
Co1—N2—C6121.60 (7)C7—C6—H6118.00
C11—N3—C11ii116.27 (12)C6—C7—H7120.00
Co1iv—N3—C11ii121.86 (7)C8—C7—H7120.00
Co1iv—N3—C11121.86 (7)C11—C10—H10120.00
O1—N4—O2118.72 (17)C9—C10—H10120.00
O2—N4—O3120.61 (15)C10—C11—H11118.00
O1—N4—O3120.67 (17)N3—C11—H11118.00
N1—C1—C2123.72 (11)
O1W—Co1—N1—C1156.61 (10)C11ii—N3—C11—C101.48 (17)
N2—Co1—N1—C1113.29 (9)N1—C1—C2—C30.3 (2)
N3i—Co1—N1—C166.72 (9)C1—C2—C3—C41.58 (19)
O1Wii—Co1—N1—C123.10 (10)C1—C2—C3—C3iii178.01 (12)
O1W—Co1—N1—C523.77 (10)C4—C3—C3iii—C2iii0.44 (18)
N2—Co1—N1—C566.34 (9)C2—C3—C4—C51.63 (19)
N3i—Co1—N1—C5113.66 (9)C3iii—C3—C4—C5177.96 (12)
O1Wii—Co1—N1—C5156.53 (10)C2—C3—C3iii—C2iii179.98 (15)
O1W—Co1—N2—C653.00 (7)C2—C3—C3iii—C4iii0.44 (18)
N1—Co1—N2—C6144.74 (7)C4—C3—C3iii—C4iii179.98 (14)
O1Wii—Co1—N2—C6127.00 (7)C3—C4—C5—N10.4 (2)
N1ii—Co1—N2—C635.27 (7)N2—C6—C7—C80.39 (18)
O1W—Co1—N2—C6ii127.00 (7)C6—C7—C8—C9179.82 (9)
N1—Co1—N2—C6ii35.27 (7)C6—C7—C8—C7ii0.18 (15)
Co1—N1—C1—C2179.36 (10)C7—C8—C9—C10ii44.87 (9)
C5—N1—C1—C21.00 (19)C7ii—C8—C9—C1044.87 (9)
Co1—N1—C5—C4179.41 (11)C7—C8—C9—C10135.13 (9)
C1—N1—C5—C40.95 (19)C8—C9—C10—C11178.64 (9)
Co1—N2—C6—C7179.80 (9)C10ii—C9—C10—C111.36 (15)
C6ii—N2—C6—C70.20 (15)C9—C10—C11—N32.9 (2)
Co1iv—N3—C11—C10178.53 (10)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+3/2; (iii) x+3/2, y+3/2, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H12···O3Wv0.877 (12)1.801 (12)2.675 (2)174.2 (14)
O1W—H13···O2Wvi0.884 (12)1.790 (12)2.6744 (18)178.7 (16)
O2W—H14···O10.878 (13)1.959 (12)2.827 (2)170.1 (13)
O2W—H15···O2vii0.882 (14)1.906 (14)2.765 (2)164.2 (14)
O3W—H16···O10.873 (13)1.908 (13)2.769 (3)168.9 (14)
O3W—H17···O3vii0.887 (11)2.109 (11)2.958 (2)159.9 (15)
C1—H1···O1Wii0.932.543.0860 (15)117
C11—H11···N1iv0.932.583.1974 (15)124
C11—H11···O3viii0.932.463.209 (2)137
Symmetry codes: (ii) x+1, y, z+3/2; (iv) x, y+1, z; (v) x+3/2, y1/2, z+3/2; (vi) x, y+2, z+1/2; (vii) x, y+2, z1/2; (viii) x+3/2, y+1/2, z+3/2.
Selected geometric parameters (Å, º) top
Co1—O1W2.0741 (10)Co1—N22.1898 (13)
Co1—N12.2235 (10)Co1—N3i2.2306 (14)
N1—Co1—N288.64 (2)N1—Co1—N3i91.37 (2)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H12···O3Wii0.877 (12)1.801 (12)2.675 (2)174.2 (14)
O1W—H13···O2Wiii0.884 (12)1.790 (12)2.6744 (18)178.7 (16)
O2W—H14···O10.878 (13)1.959 (12)2.827 (2)170.1 (13)
O2W—H15···O2iv0.882 (14)1.906 (14)2.765 (2)164.2 (14)
O3W—H16···O10.873 (13)1.908 (13)2.769 (3)168.9 (14)
O3W—H17···O3iv0.887 (11)2.109 (11)2.958 (2)159.9 (15)
C1—H1···O1Wv0.93002.54003.0860 (15)117.00
C11—H11···N1vi0.93002.58003.1974 (15)124.00
C11—H11···O3vii0.93002.46003.209 (2)137.00
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x, y+2, z+1/2; (iv) x, y+2, z1/2; (v) x+1, y, z+3/2; (vi) x, y+1, z; (vii) x+3/2, y+1/2, z+3/2.
Acknowledgements top

The authors thank the MESRS (Algeria) for financial support. AL thanks the DG–RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Dévelopement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Alegria) for support through the PNR project.

references
References top

Aoyagi, M., Biradha, K. & Fujita, M. (2000). Bull. Chem. Soc. Jpn, 73, 1369–1373.

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Felloni, M., Blake, A. J., Champness, N. R., Hubbertey, P., Wilson, C. & Schröder, M. (2002). J. Supramol. Chem. 2, 163–174.

Jin, J., Niu, S. Y., Yang, G. D. & Ye, L. (2006). Z. Anorg. Allg. Chem. 632, 2350–2354.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tong, M.-L., Zheng, S.-L. & Chen, X.-M. (2000). Polyhedron, 19, 1809–1814.