[Journal logo]

Volume 69 
Part 4 
Pages o462-o463  
April 2013  

Received 19 February 2013
Accepted 22 February 2013
Online 2 March 2013

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.004 Å
R = 0.061
wR = 0.164
Data-to-parameter ratio = 16.3
Details
Open access

2-Amino-4-(4-chlorophenyl)-4H-chromeno[8,7-b]pyridine-3-carbonitrile

aDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,bApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt,cChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia,dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

The asymmetric unit of the title compound, C19H12ClN3O, contains two molecules with similar conformations. The 14 non-H atoms comprising the 4H-chromeno[8,7-b]pyridine residue are essentially coplanar (r.m.s. deviations = 0.037 and 0.042 Å for the two molecules) and the main difference between them is seen in the twist about the bond linking the main residue to the attached chlorobenzene rings [dihedral angles = 79.01 (12) and 76.22 (11)° for the two molecules]. Zigzag supramolecular chains along the a-axis direction mediated by amino-pyridine N-H...N hydrogen bonds feature in the crystal packing; these are connected into a three-dimensional architecture by C-H...[pi] interactions and Cl...Cl contacts [Cl...Cl = 3.3896 (14) Å].

Related literature

For background to the chemistry and biological activity of 4H-pyran derivatives, see: Al-Ghamdi et al. (2012[Al-Ghamdi, A. M., Abd EL-Wahab, A. H. F., Mohamed, H. M. & El-Agrody, A. M. (2012). Lett. Drug. Des. Discov. 9, 459-470.]); El-Agrody et al. (2012[El-Agrody, A. M., Khattab, E. S. A. E. H., Fouda, A. M. & Al-Ghamdi, A. M. (2012). Med. Chem. Res. 22, 1339-1355.]). For the structure of the 2-chloro analogue, see: Wang et al. (2003[Wang, X.-S., Shi, D.-Q. & Tu, S.-J. (2003). Chin. J. Chem. 21, 1114-1117.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12ClN3O

  • Mr = 333.77

  • Monoclinic, P 21 /n

  • a = 6.5311 (8) Å

  • b = 35.129 (3) Å

  • c = 14.0903 (14) Å

  • [beta] = 101.740 (11)°

  • V = 3165.2 (6) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.25 mm-1

  • T = 295 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.833, Tmax = 1.000

  • 20646 measured reflections

  • 7326 independent reflections

  • 3471 reflections with I > 2[sigma](I)

  • Rint = 0.068

Refinement
  • R[F2 > 2[sigma](F2)] = 0.061

  • wR(F2) = 0.164

  • S = 1.01

  • 7326 reflections

  • 450 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.32 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4,C20-C23,C28 and C33-C38 rings, respectively.

D-H...A D-H H...A D...A D-H...A
N2-H1...N4i 0.84 (3) 2.34 (4) 3.172 (4) 174 (3)
N2-H2...N5i 0.89 (3) 2.61 (3) 3.308 (5) 136 (2)
N5-H3...N1 0.87 (3) 2.15 (3) 3.014 (3) 173 (3)
C18-H18...Cg1ii 0.93 2.80 3.650 (3) 152
C24-H24...Cg2iii 0.93 2.74 3.668 (3) 174
Symmetry codes: (i) x-1, y, z; (ii) [-x-{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model., 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7046 ).


Acknowledgements

We thank the Research Center of the College of Pharmacy and Deanship of Scientific Research of King Saud University for supporting this study. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Al-Ghamdi, A. M., Abd EL-Wahab, A. H. F., Mohamed, H. M. & El-Agrody, A. M. (2012). Lett. Drug. Des. Discov. 9, 459-470.  [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
El-Agrody, A. M., Khattab, E. S. A. E. H., Fouda, A. M. & Al-Ghamdi, A. M. (2012). Med. Chem. Res. 22, 1339-1355.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model., 19, 557-559.  [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Wang, X.-S., Shi, D.-Q. & Tu, S.-J. (2003). Chin. J. Chem. 21, 1114-1117.  [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o462-o463   [ doi:10.1107/S1600536813005217 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.