[Journal logo]

Volume 69 
Part 4 
Page o577  
April 2013  

Received 18 March 2013
Accepted 18 March 2013
Online 23 March 2013

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.003 Å
R = 0.058
wR = 0.147
Data-to-parameter ratio = 15.2
Details
Open access

5-Methyl-N'-[(3Z)-2-oxo-2,3-dihydro-1H-indol-3-ylidene]-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title compound, C18H14N6O2, the benzene ring is slightly twisted out of the plane of the 1,2,3-triazole ring (r.m.s. deviation = 0.010 Å), forming a dihedral angle of 6.20 (13)°. The nine non-H ring atoms of the fused five- and six-membered ring system are almost coplanar (r.m.s. deviation = 0.032 Å). The near coplanarity in the central residue is consolidated by an intramolecular bifurcated N-H...(O,N) hydrogen bond. The conformation about the N=C bond is Z. In the crystal, supramolecular chains along [101] are sustained by N-H...O hydrogen bonds and C-H...O interactions. These are consolidated into a three-dimensional architecture by C-H...[pi] and [pi]-[pi] interactions; the latter occur between centrosymmetrically related 1,2,3-triazole rings [centroid-centroid distance = 3.6056 (14) Å].

Related literature

For the biological activity of 1,2,3-triazoles, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Jordão et al. (2011[Jordão, A. K., Ferreira, V. F., Souza, T. M., Faria, G. G., Machado, V., Abrantes, J. L., de Souza, M. C. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 1860-1865.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N6O2

  • Mr = 346.35

  • Monoclinic, P 21 /n

  • a = 7.1835 (8) Å

  • b = 18.620 (2) Å

  • c = 12.2949 (11) Å

  • [beta] = 101.676 (11)°

  • V = 1610.5 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.10 mm-1

  • T = 295 K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.971, Tmax = 1.000

  • 8876 measured reflections

  • 3715 independent reflections

  • 2131 reflections with I > 2[sigma](I)

  • Rint = 0.039

Refinement
  • R[F2 > 2[sigma](F2)] = 0.058

  • wR(F2) = 0.147

  • S = 1.03

  • 3715 reflections

  • 244 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.16 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13-C18 ring.

D-H...A D-H H...A D...A D-H...A
N4-H4...O2 0.89 (1) 1.95 (2) 2.685 (2) 138 (2)
N4-H4...N3 0.89 (1) 2.34 (2) 2.715 (3) 105 (2)
N6-H6...O1i 0.88 (1) 1.95 (2) 2.783 (2) 157 (3)
C14-H14...O2ii 0.93 2.33 3.244 (3) 168
C9-H9C...Cg1iii 0.96 2.94 3.822 (2) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7059 ).


Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.  [ISI] [ChemPort] [PubMed]
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Jordão, A. K., Ferreira, V. F., Souza, T. M., Faria, G. G., Machado, V., Abrantes, J. L., de Souza, M. C. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 1860-1865.  [PubMed]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o577  [ doi:10.1107/S1600536813007502 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.