organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-[2-(1,3-Di­thio­lan-2-yl­­idene)hydrazinyl­­idene](3-fluoro­phen­yl)methyl 3-fluoro­benzoate

aDepartment of Chemistry and Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: yinling_1109@163.com

(Received 13 March 2013; accepted 17 March 2013; online 23 March 2013)

In the title compound, C17H12F2N2O2S2, the conformation of the dithia­cyclo­pentane ring is a half-chair, with a total puckering amplitude QT = 0.460 (1) Å. ππ inter­actions [centroid–centroid distance = 3.585 (9) Å between the fluoro­phenyl rings of neighbouring mol­ecules] and C—H⋯N and C—H⋯O inter­actions help to stabilize the crystal structure and form ladders along the c axis.

Related literature

For the use of dithio­lan heterocyclic compounds as broad-spectrum fungicides, see: Tanaka et al. (1976[Tanaka, H., Araki, F., Harada, T. & Kurono, H. (1976). Jpn Patent No. 51151326A.]); Wang et al. (1994[Wang, Y., Li, Z. H. & Gao, N. (1994). Yaoxue Xuebao, 29, 78-80.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12F2N2O2S2

  • Mr = 378.41

  • Triclinic, [P \overline 1]

  • a = 9.124 (4) Å

  • b = 9.757 (4) Å

  • c = 10.738 (4) Å

  • α = 104.592 (3)°

  • β = 110.326 (5)°

  • γ = 101.194 (4)°

  • V = 824.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 113 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009)[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.] Tmin = 0.932, Tmax = 0.932

  • 7057 measured reflections

  • 2896 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 0.96

  • 2896 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.97 2.49 3.280 (2) 138
C10—H10B⋯O2ii 0.97 2.46 3.248 (2) 138
C13—H13A⋯N1iii 0.93 2.50 3.424 (3) 176
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z; (iii) -x, -y+2, -z+2.

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009)[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many dithiolan heterocyclic compounds have been widely used as potent and broad-spectrum fungicides (Tanaka et al., 1976; Wang et al., 1994). In order to search for new heterocylic compounds with higher biological activities, we synthesized the (E)-((1,3-dithiolan-2-yl)diazenyl)(3-fluorophenyl)methyl 3-fluorobenzoate and describe its structure here.

In the title compound, C17H12F2N2O2S2, the conformation of the dithiacyclopentane ring (C8—C10/S1—S2) is halfchair, with a total puckering amplitude QT = 0.460 (1) Å. π-π interactions (centroid-to-centroid distances 3.585 (9) Å between the fluorophenyl rings (C12—C17) of neighbouring molecules) and intermolecular C—H···N and C—H···O interactions help to stabilize the crystal structure (Table 1).

Related literature top

For the use of dithiolan heterocyclic compounds as broad-spectrum fungicides, see: Tanaka et al. (1976); Wang et al. (1994).

Experimental top

1.34 g (10 mmol) of (1,3-dithiolan-2-ylidene)hydrazine and 20 mmol triethylamine was dissolved in 15 ml of dichloromethane and stirred at room temperature, 3.17 g (20 mmol) 3-fluorobenzoyl chloride was added dropwise to the mixture. The reaction mixture was stirred vigorously at 273 K for 3 h. The reaction mixture was poured into 200 ml of water and extracted with three 50-ml portions of dichloromethane. The combined extracts were washed with saturated brine, dried over anhydrous sodium sulfate and evaporated on a rotary evaporator to afford the crude product, which was purified by column chromatography to yield the pure product as colorless crystals. Single crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in ethanol.

Refinement top

All H atoms bonded on carbon were found on difference maps, with C–H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.
(E)-[2-(1,3-Dithiolan-2-ylidene)hydrazinylidene](3-fluorophenyl)methyl 3-fluorobenzoate top
Crystal data top
C17H12F2N2O2S2Z = 2
Mr = 378.41F(000) = 388
Triclinic, P1Dx = 1.524 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.124 (4) ÅCell parameters from 2617 reflections
b = 9.757 (4) Åθ = 2.2–27.9°
c = 10.738 (4) ŵ = 0.36 mm1
α = 104.592 (3)°T = 113 K
β = 110.326 (5)°Block, colorless
γ = 101.194 (4)°0.20 × 0.20 × 0.20 mm
V = 824.6 (6) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
2896 independent reflections
Radiation source: rotating anode2098 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.036
Detector resolution: 14.22 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
k = 1111
Tmin = 0.932, Tmax = 0.932l = 1212
7057 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
2896 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H12F2N2O2S2γ = 101.194 (4)°
Mr = 378.41V = 824.6 (6) Å3
Triclinic, P1Z = 2
a = 9.124 (4) ÅMo Kα radiation
b = 9.757 (4) ŵ = 0.36 mm1
c = 10.738 (4) ÅT = 113 K
α = 104.592 (3)°0.20 × 0.20 × 0.20 mm
β = 110.326 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2896 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
2098 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.932Rint = 0.036
7057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.96Δρmax = 0.39 e Å3
2896 reflectionsΔρmin = 0.20 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10124 (6)0.83442 (5)0.59445 (5)0.02517 (15)
O10.12238 (14)1.08666 (13)0.92674 (12)0.0209 (3)
N10.06721 (17)0.92577 (15)0.75780 (14)0.0183 (4)
F10.49133 (14)0.43408 (13)0.61224 (12)0.0447 (4)
C10.3309 (2)0.6858 (2)0.71390 (18)0.0234 (5)
H1B0.27140.66680.66020.028*
S20.31536 (6)1.14801 (5)0.73274 (5)0.02773 (15)
F20.06577 (13)1.50851 (11)1.36811 (11)0.0320 (3)
O20.27848 (15)1.15266 (14)0.75200 (12)0.0241 (3)
N20.05995 (17)1.05067 (16)0.78311 (15)0.0205 (4)
C20.4583 (2)0.5746 (2)0.7016 (2)0.0300 (5)
C30.5519 (2)0.5965 (2)0.7762 (2)0.0378 (6)
H3A0.63890.51870.76370.045*
C40.5130 (2)0.7376 (3)0.8706 (2)0.0375 (6)
H4A0.57420.75520.92310.045*
C50.3846 (2)0.8530 (2)0.88806 (19)0.0277 (5)
H5A0.35910.94740.95240.033*
C60.2929 (2)0.8280 (2)0.80908 (18)0.0194 (4)
C70.1555 (2)0.94860 (19)0.82551 (17)0.0177 (4)
C80.1433 (2)1.01277 (19)0.71174 (18)0.0196 (4)
C90.2838 (2)0.8807 (2)0.56131 (19)0.0281 (5)
H9A0.37480.86490.63020.034*
H9B0.26340.81760.46750.034*
C100.3251 (2)1.0425 (2)0.57270 (19)0.0273 (5)
H10A0.24711.05440.49090.033*
H10B0.43451.07710.57710.033*
C110.1953 (2)1.18274 (19)0.87559 (19)0.0183 (4)
C120.1586 (2)1.32341 (19)0.99052 (18)0.0176 (4)
C130.0640 (2)1.3463 (2)1.13176 (18)0.0193 (4)
H13A0.02561.27191.15840.023*
C140.0294 (2)1.4828 (2)1.23034 (18)0.0214 (4)
C150.0852 (2)1.5955 (2)1.19552 (19)0.0219 (4)
H15A0.05841.68691.26500.026*
C160.1816 (2)1.5698 (2)1.05533 (19)0.0235 (5)
H16A0.22151.64411.02990.028*
C170.2192 (2)1.4342 (2)0.95261 (19)0.0211 (4)
H17A0.28471.41710.85840.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0288 (3)0.0228 (3)0.0234 (3)0.0054 (2)0.0145 (2)0.0038 (2)
O10.0265 (7)0.0204 (7)0.0161 (7)0.0112 (6)0.0082 (6)0.0048 (6)
N10.0181 (8)0.0184 (8)0.0171 (8)0.0044 (7)0.0065 (7)0.0062 (7)
F10.0460 (8)0.0304 (7)0.0372 (7)0.0090 (6)0.0073 (6)0.0089 (6)
C10.0196 (10)0.0296 (11)0.0191 (10)0.0050 (9)0.0059 (9)0.0106 (9)
S20.0240 (3)0.0262 (3)0.0290 (3)0.0009 (2)0.0132 (2)0.0055 (2)
F20.0423 (7)0.0278 (6)0.0184 (6)0.0112 (5)0.0067 (5)0.0041 (5)
O20.0255 (7)0.0278 (7)0.0168 (7)0.0102 (6)0.0054 (6)0.0076 (6)
N20.0213 (9)0.0163 (8)0.0221 (8)0.0036 (7)0.0093 (7)0.0052 (7)
C20.0285 (12)0.0274 (11)0.0230 (11)0.0003 (9)0.0028 (10)0.0088 (10)
C30.0219 (12)0.0488 (15)0.0404 (13)0.0011 (11)0.0090 (11)0.0265 (12)
C40.0287 (12)0.0591 (16)0.0381 (13)0.0155 (11)0.0211 (11)0.0265 (12)
C50.0259 (11)0.0374 (12)0.0253 (11)0.0146 (10)0.0111 (10)0.0156 (10)
C60.0178 (10)0.0271 (11)0.0146 (10)0.0087 (8)0.0051 (8)0.0101 (9)
C70.0204 (10)0.0196 (10)0.0119 (9)0.0090 (8)0.0040 (8)0.0056 (8)
C80.0211 (10)0.0195 (10)0.0166 (10)0.0067 (8)0.0050 (9)0.0074 (8)
C90.0277 (12)0.0366 (12)0.0230 (11)0.0118 (10)0.0136 (10)0.0092 (10)
C100.0207 (10)0.0397 (12)0.0225 (11)0.0069 (9)0.0100 (9)0.0130 (10)
C110.0157 (10)0.0218 (10)0.0224 (11)0.0063 (8)0.0110 (9)0.0111 (9)
C120.0149 (10)0.0203 (10)0.0200 (10)0.0037 (8)0.0102 (8)0.0080 (8)
C130.0195 (10)0.0205 (10)0.0227 (10)0.0079 (8)0.0110 (9)0.0106 (9)
C140.0228 (11)0.0244 (11)0.0169 (10)0.0065 (9)0.0090 (9)0.0065 (9)
C150.0238 (11)0.0172 (10)0.0254 (11)0.0050 (8)0.0141 (9)0.0041 (9)
C160.0245 (11)0.0217 (10)0.0301 (11)0.0103 (9)0.0150 (10)0.0110 (9)
C170.0204 (10)0.0242 (10)0.0222 (10)0.0073 (8)0.0102 (9)0.0114 (9)
Geometric parameters (Å, º) top
S1—C81.7499 (19)C5—C61.395 (2)
S1—C91.8178 (18)C5—H5A0.9300
O1—C111.368 (2)C6—C71.469 (2)
O1—C71.401 (2)C9—C101.513 (3)
N1—C71.274 (2)C9—H9A0.9700
N1—N21.4036 (19)C9—H9B0.9700
F1—C21.366 (2)C10—H10A0.9700
C1—C21.370 (2)C10—H10B0.9700
C1—C61.394 (2)C11—C121.483 (2)
C1—H1B0.9300C12—C171.392 (3)
S2—C81.7480 (18)C12—C131.393 (2)
S2—C101.8088 (19)C13—C141.374 (2)
F2—C141.357 (2)C13—H13A0.9300
O2—C111.200 (2)C14—C151.378 (3)
N2—C81.294 (2)C15—C161.381 (2)
C2—C31.370 (3)C15—H15A0.9300
C3—C41.381 (3)C16—C171.382 (2)
C3—H3A0.9300C16—H16A0.9300
C4—C51.380 (3)C17—H17A0.9300
C4—H4A0.9300
C8—S1—C995.19 (8)S1—C9—H9A110.1
C11—O1—C7115.41 (14)C10—C9—H9B110.1
C7—N1—N2115.89 (14)S1—C9—H9B110.1
C2—C1—C6118.25 (17)H9A—C9—H9B108.4
C2—C1—H1B120.9C9—C10—S2107.36 (12)
C6—C1—H1B120.9C9—C10—H10A110.2
C8—S2—C1094.44 (8)S2—C10—H10A110.2
C8—N2—N1110.12 (14)C9—C10—H10B110.2
F1—C2—C1118.15 (17)S2—C10—H10B110.2
F1—C2—C3118.45 (17)H10A—C10—H10B108.5
C1—C2—C3123.39 (19)O2—C11—O1122.43 (17)
C2—C3—C4117.95 (18)O2—C11—C12125.87 (18)
C2—C3—H3A121.0O1—C11—C12111.70 (15)
C4—C3—H3A121.0C17—C12—C13120.61 (17)
C5—C4—C3120.84 (18)C17—C12—C11117.79 (17)
C5—C4—H4A119.6C13—C12—C11121.59 (18)
C3—C4—H4A119.6C14—C13—C12117.59 (18)
C4—C5—C6119.96 (18)C14—C13—H13A121.2
C4—C5—H5A120.0C12—C13—H13A121.2
C6—C5—H5A120.0F2—C14—C13118.49 (18)
C1—C6—C5119.59 (17)F2—C14—C15118.47 (16)
C1—C6—C7119.26 (15)C13—C14—C15123.03 (18)
C5—C6—C7121.15 (16)C14—C15—C16118.59 (17)
N1—C7—O1122.72 (15)C14—C15—H15A120.7
N1—C7—C6121.68 (16)C16—C15—H15A120.7
O1—C7—C6115.47 (14)C15—C16—C17120.32 (19)
N2—C8—S2118.67 (14)C15—C16—H16A119.8
N2—C8—S1125.76 (13)C17—C16—H16A119.8
S2—C8—S1115.57 (10)C16—C17—C12119.84 (18)
C10—C9—S1108.17 (13)C16—C17—H17A120.1
C10—C9—H9A110.1C12—C17—H17A120.1
C7—N1—N2—C8178.22 (16)C10—S2—C8—S117.80 (12)
C6—C1—C2—F1177.56 (17)C9—S1—C8—N2174.67 (17)
C6—C1—C2—C31.1 (3)C9—S1—C8—S24.65 (12)
F1—C2—C3—C4177.36 (18)C8—S1—C9—C1031.34 (14)
C1—C2—C3—C41.3 (3)S1—C9—C10—S246.97 (15)
C2—C3—C4—C50.5 (3)C8—S2—C10—C938.84 (15)
C3—C4—C5—C60.4 (3)C7—O1—C11—O21.9 (2)
C2—C1—C6—C50.1 (3)C7—O1—C11—C12177.88 (12)
C2—C1—C6—C7179.21 (16)O2—C11—C12—C173.1 (3)
C4—C5—C6—C10.6 (3)O1—C11—C12—C17177.18 (14)
C4—C5—C6—C7179.95 (17)O2—C11—C12—C13178.22 (16)
N2—N1—C7—O14.3 (2)O1—C11—C12—C131.5 (2)
N2—N1—C7—C6179.92 (15)C17—C12—C13—C141.8 (2)
C11—O1—C7—N189.6 (2)C11—C12—C13—C14176.82 (14)
C11—O1—C7—C694.45 (18)C12—C13—C14—F2178.49 (14)
C1—C6—C7—N11.9 (3)C12—C13—C14—C150.6 (3)
C5—C6—C7—N1177.38 (17)F2—C14—C15—C16179.79 (15)
C1—C6—C7—O1177.96 (16)C13—C14—C15—C160.7 (3)
C5—C6—C7—O11.4 (2)C14—C15—C16—C170.8 (3)
N1—N2—C8—S2176.83 (12)C15—C16—C17—C120.4 (3)
N1—N2—C8—S12.5 (2)C13—C12—C17—C161.8 (2)
C10—S2—C8—N2162.83 (16)C11—C12—C17—C16176.95 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.972.493.280 (2)138
C10—H10B···O2ii0.972.463.248 (2)138
C13—H13A···N1iii0.932.503.424 (3)176
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC17H12F2N2O2S2
Mr378.41
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.124 (4), 9.757 (4), 10.738 (4)
α, β, γ (°)104.592 (3), 110.326 (5), 101.194 (4)
V3)824.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2009)
Tmin, Tmax0.932, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
7057, 2896, 2098
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 0.96
No. of reflections2896
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.20

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.972.493.280 (2)138.1
C10—H10B···O2ii0.972.463.248 (2)137.9
C13—H13A···N1iii0.932.503.424 (3)175.7
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x, y+2, z+2.
 

Acknowledgements

The author thanks the Jining University Foundation (No. 2012YYJJ07) for financial support of this work.

References

First citationRigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Araki, F., Harada, T. & Kurono, H. (1976). Jpn Patent No. 51151326A.  Google Scholar
First citationWang, Y., Li, Z. H. & Gao, N. (1994). Yaoxue Xuebao, 29, 78–80.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds