supplementary materials


hy2619 scheme

Acta Cryst. (2013). E69, m202-m203    [ doi:10.1107/S1600536813006430 ]

Poly[[diaquabis{[mu]-4-[6-(4-carboxyphenyl)-4,4'-bipyridin-2-yl]benzoato-[kappa]2O:N1'}copper(II)] dimethylformamide tetrasolvate]

Y. Sun, E. Song and D. Wang

Abstract top

In the title compound, {[Cu(C24H15N2O4)2(H2O)2]·4C3H7NO}n, the CuII ion, lying on an inversion center, is six-coordinated by two N atoms from two 4-[6-(4-carboxyphenyl)-4,4'-bipyridin-2-yl]benzoate (L) ligands, two deprotonated carboxylate O atoms from two other symmetry-related L ligands and two water molecules in a slightly distorted octahedral geometry. The CuII atoms are linked by the bridging ligands into a layer parallel to (101). The presence of intralayer O-H...O hydrogen bonds and [pi]-[pi] interactions between the pyridine and benzene rings [centroid-centroid distances = 3.808 (2) and 3.927 (2) Å] stabilizes the layer. Further O-H...O hydrogen bonds link the layers and the dimethylformamide solvent molecules.

Comment top

Metal-organic coordination polymers (MOCPs) with infinite one-, two- or three-dimensional structures are assembled with metal ions or polynuclear clusters as nodes and organic ligands as linkers (Herm et al., 2011; Liu et al., 2010). Recently, the chemists have devoted themselves to design and synthesize MOCPs, not only due to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence, host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Ge & Song, 2012; Wang et al., 2010). In order to extend the investigations in this field, we used a multifunctional ligand, 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoic acid (bpydbH2) to design and synthesize the title copper(II) complex and report its structure here.

The asymmetric unit of the title compound contains one CuII ion lying on an inversion center, one anionic bpydbH ligand, one aqua ligand and two lattice DMF molecules. As shown in Fig. 1, the CuII ion is six-coordinated by two N atoms from two bpydbH ligands, two deprotonated carboxylate O atoms from two other symmetry-related bpydbH ligands and two aqua ligands, furnishing a slightly distorted octahedral geometry. The bond distances and angles are in a normal range (Xia et al., 2012). The Cu nodes are extended by the bridging bpydbH linkers into a layer parallel to (101) (Fig. 2). The presence of intralayer O—H···O hydrogen bonds and ππ interactions between the pyridine and benzene rings [centroid–centroid diatances = 3.808 (2) and 3.927 (2) Å] stabilizes the single layer.

Related literature top

For the design of metal-organic coordination polymers, see: Ge & Song (2012); Herm et al. (2011); Liu et al. (2010); Wang et al. (2010). For a related structure, see: Xia et al. (2012).

Experimental top

Cu(NO3)2.3H2O (0.0063 g, 0.025 mmol) and bpydbH2 (0.0099 g, 0.025 mmol) were suspended in a mixed solvent of dimethylformamide (DMF) (4 ml) and H2O (0.5 ml), and heated in a 15 ml Teflon-lined stainless-steel autoclave at 80°C for 3 days. After the autoclave was cooled to room temperature slowly, green crystals were collected by filtration and washed with DMF, and dried in air (yield: 65% based on Cu).

Refinement top

H atoms on C and carboxyl O atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93, 0.96 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and carboxyl)Ueq(C,O). H atoms of water molecules were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1/2 + x, 3/2 - y, -1/2 + z; (ii) 3/2 - x, -1/2 + y, 1/2 - z; (iii) 2 - x, 1 - y, -z.]
[Figure 2] Fig. 2. View of the layer structure of the title compound.
Poly[[diaquabis{µ-4-[6-(4-carboxyphenyl)-4,4'-bipyridin-2-yl]benzoato-κ2O:N1'}copper(II)] dimethylformamide tetrasolvate] top
Crystal data top
[Cu(C24H15N2O4)2(H2O)2]·4C3H7NOF(000) = 1238
Mr = 1182.73Dx = 1.395 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5226 reflections
a = 7.7161 (17) Åθ = 1.0–26.0°
b = 17.550 (4) ŵ = 0.46 mm1
c = 20.947 (4) ÅT = 293 K
β = 96.800 (4)°Block, green
V = 2816.6 (10) Å30.27 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5226 independent reflections
Radiation source: fine-focus sealed tube3371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 97
Tmin = 0.885, Tmax = 0.913k = 2121
14622 measured reflectionsl = 2025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0891P)2 + 2.0095P]
where P = (Fo2 + 2Fc2)/3
5226 reflections(Δ/σ)max < 0.001
376 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C24H15N2O4)2(H2O)2]·4C3H7NOV = 2816.6 (10) Å3
Mr = 1182.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.7161 (17) ŵ = 0.46 mm1
b = 17.550 (4) ÅT = 293 K
c = 20.947 (4) Å0.27 × 0.25 × 0.20 mm
β = 96.800 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5226 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3371 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.913Rint = 0.058
14622 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.185Δρmax = 0.93 e Å3
S = 1.04Δρmin = 0.39 e Å3
5226 reflectionsAbsolute structure: ?
376 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.00000.0362 (2)
C10.8452 (6)1.2336 (2)0.1386 (2)0.0432 (10)
C20.8060 (5)1.1653 (2)0.10151 (19)0.0347 (9)
C30.7251 (5)1.1715 (2)0.0455 (2)0.0369 (10)
H30.68541.21860.03300.044*
C40.7040 (5)1.1079 (2)0.0088 (2)0.0350 (9)
H40.65171.11280.02880.042*
C50.7592 (5)1.0363 (2)0.02669 (18)0.0286 (8)
C60.8380 (5)1.0305 (2)0.08253 (19)0.0352 (9)
H60.87620.98320.09530.042*
C70.8607 (5)1.0943 (2)0.11976 (19)0.0376 (10)
H70.91321.08940.15730.045*
C80.7389 (5)0.9695 (2)0.01565 (19)0.0302 (8)
C90.7683 (5)0.8950 (2)0.00365 (18)0.0304 (9)
H90.79720.88530.04470.036*
C100.7540 (5)0.83558 (19)0.03927 (18)0.0280 (8)
C110.7072 (5)0.8537 (2)0.09959 (18)0.0314 (9)
H110.69580.81540.12950.038*
C120.6774 (5)0.9291 (2)0.11507 (18)0.0299 (8)
C130.6253 (5)0.9511 (2)0.17864 (18)0.0301 (9)
C140.5242 (5)1.0156 (2)0.18392 (19)0.0358 (9)
H140.49241.04550.14780.043*
C150.4702 (5)1.0358 (2)0.24194 (19)0.0372 (10)
H150.40041.07860.24450.045*
C160.5196 (5)0.9925 (2)0.29668 (18)0.0312 (9)
C170.6242 (5)0.9290 (2)0.29215 (19)0.0378 (10)
H170.65860.89980.32850.045*
C180.6777 (5)0.9089 (2)0.23352 (19)0.0366 (9)
H180.74940.86670.23100.044*
C190.4600 (6)1.0145 (2)0.3597 (2)0.0361 (10)
C200.7944 (5)0.75539 (19)0.02344 (17)0.0288 (8)
C210.9191 (5)0.73870 (19)0.01677 (18)0.0307 (9)
H210.96890.77780.03840.037*
C220.9695 (5)0.6647 (2)0.02478 (19)0.0339 (9)
H221.05430.65490.05170.041*
C230.7732 (5)0.6214 (2)0.04100 (19)0.0360 (9)
H230.71970.58110.05980.043*
C240.7177 (5)0.6942 (2)0.05158 (18)0.0342 (9)
H240.62940.70250.07740.041*
C250.6692 (8)0.6406 (4)0.1720 (3)0.0829 (19)
H25A0.70590.67730.20160.124*
H25B0.61440.59840.19550.124*
H25C0.76890.62290.14420.124*
C260.5118 (8)0.7558 (3)0.1443 (3)0.0756 (16)
H26A0.57390.77410.17830.113*
H26B0.54930.78330.10550.113*
H26C0.38890.76330.15580.113*
C270.4770 (6)0.6364 (3)0.0897 (2)0.0543 (12)
H270.50820.58540.08430.065*
C280.4517 (16)1.2769 (5)0.2557 (5)0.203 (6)
H28A0.41531.26420.21480.304*
H28B0.56561.25610.25860.304*
H28C0.37031.25620.28950.304*
C290.4063 (11)1.3970 (6)0.2090 (4)0.157 (4)
H29A0.37871.36130.17700.235*
H29B0.30541.42740.22280.235*
H29C0.49991.42940.19120.235*
C300.5028 (11)1.3864 (4)0.3123 (4)0.119 (3)
H300.48601.43870.31660.142*
N10.6925 (4)0.98644 (16)0.07362 (15)0.0305 (7)
N20.9010 (4)0.60580 (17)0.00477 (15)0.0331 (8)
N30.5471 (5)0.6755 (2)0.13415 (19)0.0533 (10)
N40.4576 (6)1.3570 (2)0.2622 (2)0.0619 (11)
O10.5313 (4)0.98064 (14)0.40897 (13)0.0395 (7)
O20.3418 (4)1.06386 (16)0.35908 (14)0.0488 (8)
O30.9397 (5)1.23445 (17)0.18056 (16)0.0582 (9)
O40.7673 (4)1.29571 (17)0.11906 (16)0.0607 (9)
H4A0.79161.33240.14050.091*
O50.3740 (4)0.6624 (2)0.05498 (17)0.0651 (10)
O60.5670 (7)1.3545 (2)0.3567 (2)0.1082 (17)
O1W1.3019 (4)0.54357 (17)0.02770 (15)0.0552 (8)
H1A1.32360.58470.00870.083*
H1B1.28280.55520.06560.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0628 (5)0.0222 (3)0.0263 (4)0.0050 (3)0.0164 (3)0.0015 (3)
C10.054 (3)0.033 (2)0.042 (3)0.001 (2)0.005 (2)0.0034 (19)
C20.036 (2)0.031 (2)0.037 (2)0.0049 (17)0.0019 (18)0.0061 (17)
C30.040 (2)0.0251 (19)0.046 (3)0.0037 (16)0.010 (2)0.0004 (17)
C40.039 (2)0.0273 (19)0.041 (2)0.0008 (17)0.0146 (19)0.0013 (17)
C50.032 (2)0.0272 (19)0.027 (2)0.0010 (16)0.0060 (16)0.0009 (15)
C60.048 (2)0.0254 (18)0.033 (2)0.0009 (17)0.0094 (19)0.0029 (16)
C70.052 (3)0.035 (2)0.028 (2)0.0037 (18)0.0104 (19)0.0002 (17)
C80.034 (2)0.0256 (18)0.032 (2)0.0004 (16)0.0066 (17)0.0011 (16)
C90.037 (2)0.0284 (19)0.027 (2)0.0006 (16)0.0088 (17)0.0017 (16)
C100.033 (2)0.0240 (18)0.028 (2)0.0001 (15)0.0067 (16)0.0014 (15)
C110.042 (2)0.0257 (19)0.027 (2)0.0008 (16)0.0090 (17)0.0019 (16)
C120.036 (2)0.0275 (19)0.027 (2)0.0004 (16)0.0085 (17)0.0000 (16)
C130.038 (2)0.0284 (19)0.025 (2)0.0028 (16)0.0074 (17)0.0047 (15)
C140.048 (2)0.033 (2)0.027 (2)0.0025 (17)0.0097 (19)0.0007 (16)
C150.050 (2)0.030 (2)0.034 (2)0.0050 (18)0.0104 (19)0.0020 (17)
C160.041 (2)0.0259 (19)0.029 (2)0.0039 (16)0.0126 (17)0.0045 (16)
C170.051 (3)0.032 (2)0.032 (2)0.0009 (18)0.0092 (19)0.0052 (17)
C180.047 (2)0.031 (2)0.033 (2)0.0078 (18)0.0118 (19)0.0013 (17)
C190.050 (2)0.026 (2)0.035 (2)0.0054 (18)0.014 (2)0.0043 (17)
C200.039 (2)0.0239 (18)0.024 (2)0.0012 (16)0.0051 (16)0.0003 (15)
C210.043 (2)0.0225 (18)0.029 (2)0.0019 (16)0.0141 (17)0.0005 (15)
C220.047 (2)0.0275 (19)0.030 (2)0.0006 (17)0.0146 (18)0.0004 (16)
C230.052 (3)0.028 (2)0.030 (2)0.0039 (18)0.0140 (19)0.0014 (16)
C240.045 (2)0.031 (2)0.029 (2)0.0012 (17)0.0158 (18)0.0017 (16)
C250.081 (4)0.119 (5)0.052 (4)0.025 (4)0.022 (3)0.004 (3)
C260.097 (4)0.062 (3)0.069 (4)0.003 (3)0.017 (3)0.009 (3)
C270.056 (3)0.053 (3)0.054 (3)0.005 (2)0.005 (3)0.002 (2)
C280.303 (15)0.088 (6)0.196 (11)0.064 (8)0.057 (10)0.066 (7)
C290.132 (7)0.259 (12)0.082 (6)0.104 (8)0.025 (5)0.000 (6)
C300.167 (8)0.079 (5)0.123 (7)0.022 (5)0.067 (6)0.031 (5)
N10.0353 (17)0.0303 (17)0.0272 (18)0.0014 (13)0.0090 (14)0.0030 (13)
N20.049 (2)0.0260 (16)0.0265 (18)0.0009 (14)0.0128 (15)0.0000 (13)
N30.054 (2)0.062 (3)0.046 (2)0.000 (2)0.0151 (19)0.0015 (19)
N40.071 (3)0.059 (3)0.061 (3)0.012 (2)0.027 (2)0.019 (2)
O10.0655 (19)0.0274 (14)0.0276 (16)0.0003 (13)0.0135 (14)0.0001 (11)
O20.071 (2)0.0377 (16)0.0413 (19)0.0105 (15)0.0232 (15)0.0045 (13)
O30.082 (2)0.0458 (19)0.051 (2)0.0038 (17)0.0217 (19)0.0064 (15)
O40.081 (2)0.0349 (17)0.070 (2)0.0016 (16)0.0251 (19)0.0134 (16)
O50.060 (2)0.075 (2)0.064 (2)0.0093 (18)0.0235 (19)0.0012 (19)
O60.179 (5)0.077 (3)0.083 (3)0.005 (3)0.075 (3)0.021 (2)
O1W0.072 (2)0.0441 (18)0.053 (2)0.0041 (16)0.0239 (17)0.0006 (15)
Geometric parameters (Å, º) top
Cu1—O1i1.980 (3)C19—O21.256 (5)
Cu1—O1ii1.980 (3)C19—O11.260 (5)
Cu1—N22.015 (3)C20—C211.383 (5)
Cu1—N2iii2.015 (3)C20—C241.390 (5)
C1—O31.207 (5)C21—C221.371 (5)
C1—O41.332 (5)C21—H210.9300
C1—C21.480 (5)C22—N21.345 (5)
C2—C71.383 (5)C22—H220.9300
C2—C31.398 (5)C23—N21.342 (5)
C3—C41.375 (5)C23—C241.374 (5)
C3—H30.9300C23—H230.9300
C4—C51.393 (5)C24—H240.9300
C4—H40.9300C25—N31.439 (6)
C5—C61.385 (5)C25—H25A0.9600
C5—C81.490 (5)C25—H25B0.9600
C6—C71.388 (5)C25—H25C0.9600
C6—H60.9300C26—N31.447 (6)
C7—H70.9300C26—H26A0.9600
C8—N11.340 (5)C26—H26B0.9600
C8—C91.394 (5)C26—H26C0.9600
C9—C101.390 (5)C27—O51.226 (5)
C9—H90.9300C27—N31.323 (6)
C10—C111.392 (5)C27—H270.9300
C10—C201.487 (5)C28—N41.413 (9)
C11—C121.388 (5)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—N11.343 (5)C28—H28C0.9600
C12—C131.487 (5)C29—N41.411 (8)
C13—C141.385 (5)C29—H29A0.9600
C13—C181.387 (5)C29—H29B0.9600
C14—C151.377 (5)C29—H29C0.9600
C14—H140.9300C30—O61.238 (8)
C15—C161.391 (5)C30—N41.255 (7)
C15—H150.9300C30—H300.9300
C16—C171.385 (5)O1—Cu1iv1.980 (3)
C16—C191.499 (5)O4—H4A0.8200
C17—C181.387 (5)O1W—H1A0.8501
C17—H170.9300O1W—H1B0.8489
C18—H180.9300
O1i—Cu1—O1ii180.0O2—C19—C16117.9 (4)
O1i—Cu1—N291.16 (11)O1—C19—C16116.7 (4)
O1ii—Cu1—N288.84 (11)C21—C20—C24117.2 (3)
O1i—Cu1—N2iii88.84 (11)C21—C20—C10121.0 (3)
O1ii—Cu1—N2iii91.16 (11)C24—C20—C10121.7 (3)
N2—Cu1—N2iii180.0C22—C21—C20120.2 (3)
O3—C1—O4123.2 (4)C22—C21—H21119.9
O3—C1—C2124.8 (4)C20—C21—H21119.9
O4—C1—C2112.0 (4)N2—C22—C21122.6 (4)
C7—C2—C3118.9 (3)N2—C22—H22118.7
C7—C2—C1119.8 (4)C21—C22—H22118.7
C3—C2—C1121.1 (4)N2—C23—C24123.0 (3)
C4—C3—C2120.0 (4)N2—C23—H23118.5
C4—C3—H3120.0C24—C23—H23118.5
C2—C3—H3120.0C23—C24—C20119.6 (4)
C3—C4—C5121.4 (4)C23—C24—H24120.2
C3—C4—H4119.3C20—C24—H24120.2
C5—C4—H4119.3N3—C25—H25A109.5
C6—C5—C4118.3 (3)N3—C25—H25B109.5
C6—C5—C8122.2 (3)H25A—C25—H25B109.5
C4—C5—C8119.5 (3)N3—C25—H25C109.5
C5—C6—C7120.8 (4)H25A—C25—H25C109.5
C5—C6—H6119.6H25B—C25—H25C109.5
C7—C6—H6119.6N3—C26—H26A109.5
C2—C7—C6120.6 (4)N3—C26—H26B109.5
C2—C7—H7119.7H26A—C26—H26B109.5
C6—C7—H7119.7N3—C26—H26C109.5
N1—C8—C9122.8 (3)H26A—C26—H26C109.5
N1—C8—C5115.0 (3)H26B—C26—H26C109.5
C9—C8—C5122.2 (3)O5—C27—N3124.9 (5)
C10—C9—C8119.2 (3)O5—C27—H27117.6
C10—C9—H9120.4N3—C27—H27117.6
C8—C9—H9120.4N4—C28—H28A109.5
C9—C10—C11117.7 (3)N4—C28—H28B109.5
C9—C10—C20122.1 (3)H28A—C28—H28B109.5
C11—C10—C20120.2 (3)N4—C28—H28C109.5
C12—C11—C10119.9 (3)H28A—C28—H28C109.5
C12—C11—H11120.1H28B—C28—H28C109.5
C10—C11—H11120.1N4—C29—H29A109.5
N1—C12—C11122.3 (3)N4—C29—H29B109.5
N1—C12—C13115.9 (3)H29A—C29—H29B109.5
C11—C12—C13121.8 (3)N4—C29—H29C109.5
C14—C13—C18118.8 (3)H29A—C29—H29C109.5
C14—C13—C12119.9 (3)H29B—C29—H29C109.5
C18—C13—C12121.3 (3)O6—C30—N4128.2 (7)
C15—C14—C13120.9 (4)O6—C30—H30115.9
C15—C14—H14119.6N4—C30—H30115.9
C13—C14—H14119.6C8—N1—C12118.2 (3)
C14—C15—C16120.3 (4)C23—N2—C22117.3 (3)
C14—C15—H15119.9C23—N2—Cu1121.6 (2)
C16—C15—H15119.9C22—N2—Cu1120.9 (3)
C17—C16—C15119.2 (4)C27—N3—C25121.1 (5)
C17—C16—C19120.7 (4)C27—N3—C26121.6 (4)
C15—C16—C19120.1 (3)C25—N3—C26117.3 (4)
C16—C17—C18120.2 (4)C30—N4—C29125.9 (7)
C16—C17—H17119.9C30—N4—C28120.2 (7)
C18—C17—H17119.9C29—N4—C28113.8 (7)
C17—C18—C13120.6 (4)C19—O1—Cu1iv128.1 (3)
C17—C18—H18119.7C1—O4—H4A109.5
C13—C18—H18119.7H1A—O1W—H1B107.4
O2—C19—O1125.4 (4)
O3—C1—C2—C78.6 (7)C19—C16—C17—C18179.6 (4)
O4—C1—C2—C7173.1 (4)C16—C17—C18—C131.0 (6)
O3—C1—C2—C3166.8 (4)C14—C13—C18—C172.5 (6)
O4—C1—C2—C311.4 (6)C12—C13—C18—C17178.2 (3)
C7—C2—C3—C41.3 (6)C17—C16—C19—O2167.7 (4)
C1—C2—C3—C4174.2 (4)C15—C16—C19—O212.3 (5)
C2—C3—C4—C51.1 (6)C17—C16—C19—O111.0 (5)
C3—C4—C5—C60.6 (6)C15—C16—C19—O1168.9 (4)
C3—C4—C5—C8178.0 (4)C9—C10—C20—C2130.9 (6)
C4—C5—C6—C70.2 (6)C11—C10—C20—C21146.3 (4)
C8—C5—C6—C7177.6 (4)C9—C10—C20—C24153.5 (4)
C3—C2—C7—C61.0 (6)C11—C10—C20—C2429.2 (5)
C1—C2—C7—C6174.6 (4)C24—C20—C21—C223.5 (6)
C5—C6—C7—C20.5 (6)C10—C20—C21—C22172.2 (4)
C6—C5—C8—N1167.3 (3)C20—C21—C22—N20.6 (6)
C4—C5—C8—N110.0 (5)N2—C23—C24—C200.7 (6)
C6—C5—C8—C911.9 (6)C21—C20—C24—C232.9 (6)
C4—C5—C8—C9170.7 (4)C10—C20—C24—C23172.8 (4)
N1—C8—C9—C101.8 (6)C9—C8—N1—C121.4 (5)
C5—C8—C9—C10177.3 (3)C5—C8—N1—C12177.9 (3)
C8—C9—C10—C111.2 (5)C11—C12—N1—C80.4 (5)
C8—C9—C10—C20176.1 (3)C13—C12—N1—C8179.9 (3)
C9—C10—C11—C120.3 (5)C24—C23—N2—C223.6 (6)
C20—C10—C11—C12177.1 (3)C24—C23—N2—Cu1171.8 (3)
C10—C11—C12—N10.1 (6)C21—C22—N2—C233.0 (6)
C10—C11—C12—C13179.4 (3)C21—C22—N2—Cu1172.4 (3)
N1—C12—C13—C1428.6 (5)O1i—Cu1—N2—C2334.5 (3)
C11—C12—C13—C14151.0 (4)O1ii—Cu1—N2—C23145.5 (3)
N1—C12—C13—C18150.7 (4)O1i—Cu1—N2—C22140.8 (3)
C11—C12—C13—C1829.8 (6)O1ii—Cu1—N2—C2239.2 (3)
C18—C13—C14—C152.7 (6)O5—C27—N3—C25179.0 (5)
C12—C13—C14—C15178.1 (4)O5—C27—N3—C262.5 (8)
C13—C14—C15—C161.3 (6)O6—C30—N4—C29171.2 (8)
C14—C15—C16—C170.3 (6)O6—C30—N4—C2810.0 (14)
C14—C15—C16—C19179.8 (4)O2—C19—O1—Cu1iv6.5 (6)
C15—C16—C17—C180.4 (6)C16—C19—O1—Cu1iv174.9 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+2, y+1, z; (iv) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2v0.821.862.584 (4)146
O1W—H1A···O5vi0.851.982.808 (5)165
O1W—H1B···O2i0.851.952.758 (4)159
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (v) x+1/2, y+5/2, z1/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.821.862.584 (4)146
O1W—H1A···O5ii0.851.982.808 (5)165
O1W—H1B···O2iii0.851.952.758 (4)159
Symmetry codes: (i) x+1/2, y+5/2, z1/2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+1/2.
Acknowledgements top

The authors are grateful for financial aid from The First Hospital of Jilin University.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ge, X. & Song, S. (2012). Acta Cryst. E68, m1413.

Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R. & Long, J. R. (2011). J. Am. Chem. Soc. 133, 5664–5667.

Liu, Y., Xuan, W. & Cui, Y. (2010). Adv. Mater. 22, 4112–4135.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534–540.

Xia, Q.-H., Guo, Z.-F., Liu, L., Wang, Z. & Li, B. (2012). Acta Cryst. E68, m1395.