supplementary materials


hy2620 scheme

Acta Cryst. (2013). E69, m210    [ doi:10.1107/S1600536813006752 ]

Aquabis(4-chlorobenzoato)-[kappa]2O,O';[kappa]O-bis(pyridine-[kappa]N)cobalt(II)

Y.-L. Chen, C.-E. Zhang, P. Fei, C. Deng and B.-T. Su

Abstract top

In the title compound, [Co(C7H4ClO2)2(C5H5N)2(H2O)], the CoII atom is six-coordinated by three O atoms from a bidentate and a monodentate 4-chlorobenzoate ligand, two N atoms from two pyridine ligands and a water O atom, giving a distorted octahedral geometry. In the crystal, the complex molecules are connected by O-H...O hydrogen bonds and [pi]-[pi] interactions between the benzene rings [centroid-centroid distance = 3.8924 (17) Å] into a chain along [010]. Between adjacent chains, [pi]-[pi] interactions occur between the pyridine rings [centroid-centroid distance = 3.898 (2) Å], giving an overall two-dimensional architecture.

Comment top

Metal-organic frameworks (MOFs) of aromatic acid are of great interest not only owing to their various structural motifs, but also due to their potential applications in the areas of material chemistry, medical chemistry, biological chemistry, molecular recognition and molecular device (Macgillivray et al., 1998; Masaoka et al., 2001). Sometimes hydrogen bonds play important roles in MOFs (Qiu et al., 2008; Wang & Sun, 2012). In order to achieve MOFs by self-assembly and to explore their hydrogen bonds, herein we report the synthesis and crystal structure of a cobalt complex with 4-chlorobenzoic acid.

As shown in Fig. 1, the CoII atom is six-coordinated by three O atoms from two 4-chlorobenzoate ligands, two N atoms from two pyridine molecules and a water molecule. The CoII atom adopts a distorted octahedral geometry, in which two N atoms occupy the axial sites. The axial Co—N bond distances are 2.158 (2) and 2.168 (2) Å. The Co1—O3 bond distance [1.9931 (19) Å] for the monodentate 4-chlorobenzoate ligand is slightly shorter than Co1—O1 and Co1—O2 [2.1674 (18) and 2.2196 (18) Å] for the bidentate ligand. The crystal packing shows that the molecules are linked by O—H···O hydrogen bonds and ππ interactions between the benzene rings [centroid–centroid distances = 3.8924 (17) Å] into a polymeric chain along [010], as shown in Fig. 2. Between the adjacent chains, ππ interactions exist between the pyridine rings [centroid–centroid distance is 3.898 (2) Å] to give an overall 2D architecture.

Related literature top

For structures and applications of related compounds, see: Macgillivray et al. (1998); Masaoka et al. (2001); Qiu et al. (2008); Wang & Sun (2012).

Experimental top

A pyridine solution (5 ml) of Co(NO3)2.4H2O (0.1 mmol) was added dropwise to an ethyl acetate solution (15 ml) of 4-chlorobenzoic acid (0.2 mmol). The mixture was sealed in a Teflon-lined autoclave and heated under autogenous pressure to 120°C for 3 days and then allowed to cool to room temperature at a rate of 1°C per minute. Block-shaped purple crystals of the title complex were collected in 43% yield.

Refinement top

H atoms on C atoms were place at calculated positions and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located from a difference Fourier map and refined as riding with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The chain structure of the title complex, constructed by hydrogen bonds (dashed lines).
Aquabis(4-chlorobenzoato)-κ2O,O';κO-bis(pyridine-κN)cobalt(II) top
Crystal data top
[Co(C7H4ClO2)2(C5H5N)2(H2O)]F(000) = 1116
Mr = 546.25Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6935 reflections
a = 15.1157 (8) Åθ = 2.4–28.2°
b = 5.8696 (3) ŵ = 0.98 mm1
c = 28.5419 (9) ÅT = 298 K
β = 109.682 (3)°Block, purple
V = 2384.4 (2) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4175 independent reflections
Radiation source: fine-focus sealed tube3590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.695, Tmax = 0.828k = 66
15626 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0201P)2 + 2.9673P]
where P = (Fo2 + 2Fc2)/3
4175 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C7H4ClO2)2(C5H5N)2(H2O)]V = 2384.4 (2) Å3
Mr = 546.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1157 (8) ŵ = 0.98 mm1
b = 5.8696 (3) ÅT = 298 K
c = 28.5419 (9) Å0.40 × 0.30 × 0.20 mm
β = 109.682 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4175 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3590 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.828Rint = 0.028
15626 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.48 e Å3
S = 1.10Δρmin = 0.43 e Å3
4175 reflectionsAbsolute structure: ?
307 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.23784 (2)0.86593 (6)0.875872 (13)0.02636 (11)
Cl10.21542 (8)0.3351 (2)0.95560 (5)0.0979 (4)
Cl20.71492 (7)0.92030 (19)0.78128 (5)0.0839 (4)
O10.10651 (13)0.9072 (3)0.88994 (7)0.0379 (5)
O20.17142 (13)0.5694 (3)0.89912 (7)0.0359 (5)
O30.35454 (13)0.7911 (4)0.86129 (7)0.0451 (5)
O40.40222 (15)0.4307 (4)0.86863 (9)0.0556 (6)
O50.24608 (13)1.2116 (3)0.86343 (7)0.0366 (5)
H1W0.29641.27760.86510.055*
H2W0.21661.28390.87740.055*
N10.16311 (15)0.8021 (4)0.79767 (8)0.0326 (5)
N20.31910 (15)0.9057 (4)0.95367 (8)0.0325 (5)
C20.0318 (2)0.3927 (5)0.93584 (10)0.0412 (7)
H20.08520.30370.94110.049*
C30.0535 (2)0.7357 (6)0.90731 (11)0.0420 (7)
H30.05690.88060.89360.050*
C60.02714 (19)0.6065 (5)0.91523 (9)0.0319 (6)
C70.10590 (18)0.7004 (5)0.90078 (9)0.0301 (6)
C80.1215 (2)0.4410 (6)0.94008 (12)0.0524 (9)
C90.0427 (2)0.3096 (6)0.94881 (12)0.0496 (8)
H90.03910.16630.96330.060*
C100.1284 (2)0.6540 (6)0.91935 (12)0.0526 (9)
H100.18240.74110.91360.063*
C120.55779 (19)0.5577 (5)0.84130 (11)0.0374 (7)
H120.55980.41560.85600.045*
C130.5506 (2)0.9779 (5)0.79653 (11)0.0420 (7)
H130.54821.11870.78120.050*
C140.48302 (18)0.7019 (4)0.83676 (9)0.0288 (6)
C150.6245 (2)0.8322 (5)0.80206 (12)0.0436 (7)
C160.4800 (2)0.9117 (5)0.81416 (10)0.0356 (7)
H160.42981.00940.81080.043*
C170.6296 (2)0.6223 (5)0.82424 (12)0.0471 (8)
H170.68020.52580.82770.056*
C180.40645 (18)0.6316 (5)0.85674 (10)0.0343 (6)
C220.1111 (2)0.6170 (5)0.78027 (11)0.0402 (7)
H220.10640.50780.80290.048*
C230.0641 (2)0.5797 (5)0.73044 (11)0.0466 (8)
H230.02850.44830.72000.056*
C240.0700 (2)0.7357 (6)0.69669 (11)0.0487 (8)
H240.03740.71570.66290.058*
C250.1706 (2)0.9504 (6)0.76401 (11)0.0468 (8)
H250.20811.07840.77500.056*
C270.3169 (2)1.0861 (5)0.98112 (11)0.0455 (8)
H270.27521.20330.96670.055*
C280.3784 (2)0.7390 (5)0.97579 (11)0.0425 (7)
H280.38010.60970.95730.051*
C290.3737 (3)1.1083 (6)1.03022 (12)0.0572 (9)
H290.37041.23791.04830.069*
C300.4374 (2)0.7476 (6)1.02459 (11)0.0497 (8)
H300.47780.62751.03860.060*
C310.4349 (2)0.9365 (6)1.05170 (12)0.0545 (9)
H310.47450.94861.08460.065*
C340.1252 (2)0.9234 (6)0.71350 (11)0.0541 (9)
H340.13211.03170.69120.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02674 (19)0.02380 (19)0.02987 (19)0.00091 (15)0.01127 (14)0.00061 (15)
Cl10.0735 (7)0.1326 (11)0.1053 (9)0.0426 (7)0.0536 (7)0.0101 (8)
Cl20.0694 (6)0.0799 (7)0.1319 (10)0.0037 (5)0.0727 (7)0.0154 (7)
O10.0372 (11)0.0302 (11)0.0534 (12)0.0000 (9)0.0246 (10)0.0037 (9)
O20.0396 (11)0.0296 (10)0.0458 (11)0.0011 (9)0.0240 (9)0.0020 (9)
O30.0355 (11)0.0561 (14)0.0504 (13)0.0067 (10)0.0233 (10)0.0017 (11)
O40.0485 (13)0.0444 (14)0.0834 (17)0.0051 (11)0.0348 (12)0.0148 (12)
O50.0400 (11)0.0224 (10)0.0523 (13)0.0030 (8)0.0220 (10)0.0017 (9)
N10.0320 (12)0.0334 (13)0.0325 (13)0.0028 (10)0.0111 (10)0.0001 (10)
N20.0337 (12)0.0308 (13)0.0336 (12)0.0027 (10)0.0120 (10)0.0015 (10)
C20.0516 (18)0.0354 (16)0.0411 (17)0.0053 (14)0.0215 (14)0.0031 (14)
C30.0391 (17)0.0479 (18)0.0434 (18)0.0028 (14)0.0195 (14)0.0011 (15)
C60.0359 (15)0.0320 (15)0.0290 (14)0.0078 (12)0.0127 (12)0.0058 (12)
C70.0316 (15)0.0320 (16)0.0268 (14)0.0024 (12)0.0101 (12)0.0047 (12)
C80.051 (2)0.069 (2)0.0457 (19)0.0261 (18)0.0284 (16)0.0083 (17)
C90.068 (2)0.0407 (18)0.0465 (19)0.0185 (17)0.0278 (17)0.0013 (15)
C100.0381 (18)0.069 (2)0.057 (2)0.0014 (17)0.0235 (16)0.0030 (18)
C120.0384 (16)0.0290 (15)0.0486 (18)0.0013 (12)0.0196 (14)0.0022 (13)
C130.0524 (19)0.0335 (16)0.0463 (18)0.0039 (14)0.0249 (15)0.0013 (14)
C140.0287 (14)0.0283 (14)0.0296 (14)0.0035 (11)0.0102 (11)0.0050 (11)
C150.0393 (17)0.0460 (19)0.0549 (19)0.0064 (14)0.0283 (15)0.0045 (15)
C160.0383 (16)0.0343 (16)0.0375 (15)0.0082 (13)0.0169 (13)0.0028 (13)
C170.0364 (17)0.0445 (18)0.068 (2)0.0080 (14)0.0280 (16)0.0014 (17)
C180.0287 (14)0.0429 (17)0.0294 (14)0.0012 (13)0.0075 (12)0.0009 (13)
C220.0436 (17)0.0338 (16)0.0405 (16)0.0031 (14)0.0106 (13)0.0024 (14)
C230.0450 (18)0.0433 (19)0.0443 (18)0.0075 (15)0.0055 (15)0.0102 (15)
C240.054 (2)0.056 (2)0.0304 (17)0.0062 (17)0.0064 (15)0.0060 (15)
C250.059 (2)0.0460 (18)0.0364 (17)0.0149 (16)0.0173 (15)0.0008 (14)
C270.0542 (19)0.0370 (18)0.0449 (18)0.0008 (14)0.0161 (15)0.0032 (14)
C280.0462 (18)0.0401 (17)0.0403 (18)0.0021 (15)0.0135 (14)0.0021 (14)
C290.080 (3)0.050 (2)0.0416 (19)0.018 (2)0.0209 (18)0.0157 (17)
C300.0466 (19)0.060 (2)0.0375 (18)0.0030 (16)0.0071 (15)0.0085 (16)
C310.056 (2)0.069 (2)0.0323 (17)0.0182 (19)0.0068 (15)0.0001 (17)
C340.075 (2)0.054 (2)0.0351 (17)0.0041 (18)0.0209 (17)0.0077 (15)
Geometric parameters (Å, º) top
Co1—O31.9931 (19)C12—C141.382 (4)
Co1—O52.0710 (18)C12—C171.384 (4)
Co1—N22.158 (2)C12—H120.9300
Co1—O12.1674 (18)C13—C151.373 (4)
Co1—N12.168 (2)C13—C161.381 (4)
Co1—O22.2196 (18)C13—H130.9300
Cl1—C81.738 (3)C14—C161.384 (4)
Cl2—C151.741 (3)C14—C181.510 (4)
O1—C71.253 (3)C15—C171.376 (4)
O2—C71.268 (3)C16—H160.9300
O3—C181.256 (3)C17—H170.9300
O4—C181.235 (4)C22—C231.377 (4)
O5—H1W0.8405C22—H220.9300
O5—H2W0.8101C23—C241.354 (4)
N1—C251.329 (4)C23—H230.9300
N1—C221.335 (4)C24—C341.368 (5)
N2—C271.324 (4)C24—H240.9300
N2—C281.334 (4)C25—C341.381 (4)
C2—C61.378 (4)C25—H250.9300
C2—C91.387 (4)C27—C291.381 (4)
C2—H20.9300C27—H270.9300
C3—C101.375 (4)C28—C301.379 (4)
C3—C61.388 (4)C28—H280.9300
C3—H30.9300C29—C311.366 (5)
C6—C71.491 (4)C29—H290.9300
C8—C91.370 (5)C30—C311.359 (5)
C8—C101.372 (5)C30—H300.9300
C9—H90.9300C31—H310.9300
C10—H100.9300C34—H340.9300
O3—Co1—O594.10 (8)C17—C12—H12119.6
O3—Co1—N290.09 (8)C15—C13—C16118.8 (3)
O5—Co1—N291.37 (8)C15—C13—H13120.6
O3—Co1—O1173.52 (9)C16—C13—H13120.6
O5—Co1—O191.95 (7)C12—C14—C16119.1 (2)
N2—Co1—O192.10 (8)C12—C14—C18120.3 (2)
O3—Co1—N186.43 (8)C16—C14—C18120.7 (2)
O5—Co1—N191.91 (8)C13—C15—C17121.9 (3)
N2—Co1—N1175.38 (9)C13—C15—Cl2118.5 (2)
O1—Co1—N191.03 (8)C17—C15—Cl2119.6 (2)
O3—Co1—O2114.26 (8)C13—C16—C14120.8 (3)
O5—Co1—O2151.53 (7)C13—C16—H16119.6
N2—Co1—O286.29 (8)C14—C16—H16119.6
O1—Co1—O259.84 (7)C15—C17—C12118.6 (3)
N1—Co1—O292.35 (8)C15—C17—H17120.7
C7—O1—Co191.20 (16)C12—C17—H17120.7
C7—O2—Co188.45 (16)O4—C18—O3126.3 (3)
C18—O3—Co1144.4 (2)O4—C18—C14118.8 (3)
Co1—O5—H1W123.2O3—C18—C14114.9 (3)
Co1—O5—H2W110.7N1—C22—C23123.2 (3)
H1W—O5—H2W111.6N1—C22—H22118.4
C25—N1—C22116.5 (2)C23—C22—H22118.4
C25—N1—Co1119.32 (19)C24—C23—C22119.5 (3)
C22—N1—Co1124.12 (19)C24—C23—H23120.2
C27—N2—C28117.0 (3)C22—C23—H23120.2
C27—N2—Co1125.2 (2)C23—C24—C34118.3 (3)
C28—N2—Co1117.81 (19)C23—C24—H24120.9
C6—C2—C9120.3 (3)C34—C24—H24120.9
C6—C2—H2119.8N1—C25—C34123.1 (3)
C9—C2—H2119.8N1—C25—H25118.4
C10—C3—C6121.3 (3)C34—C25—H25118.4
C10—C3—H3119.3N2—C27—C29123.0 (3)
C6—C3—H3119.3N2—C27—H27118.5
C2—C6—C3118.9 (3)C29—C27—H27118.5
C2—C6—C7121.6 (3)N2—C28—C30123.7 (3)
C3—C6—C7119.5 (3)N2—C28—H28118.2
O1—C7—O2120.5 (2)C30—C28—H28118.2
O1—C7—C6120.0 (2)C31—C29—C27118.8 (3)
O2—C7—C6119.5 (2)C31—C29—H29120.6
C9—C8—C10121.8 (3)C27—C29—H29120.6
C9—C8—Cl1119.2 (3)C31—C30—C28118.2 (3)
C10—C8—Cl1119.1 (3)C31—C30—H30120.9
C8—C9—C2119.2 (3)C28—C30—H30120.9
C8—C9—H9120.4C30—C31—C29119.4 (3)
C2—C9—H9120.4C30—C31—H31120.3
C8—C10—C3118.4 (3)C29—C31—H31120.3
C8—C10—H10120.8C24—C34—C25119.2 (3)
C3—C10—H10120.8C24—C34—H34120.4
C14—C12—C17120.9 (3)C25—C34—H34120.4
C14—C12—H12119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4i0.841.812.648 (3)178
O5—H2W···O2i0.811.992.737 (3)154
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4i0.841.812.648 (3)178
O5—H2W···O2i0.811.992.737 (3)154
Symmetry code: (i) x, y+1, z.
Acknowledgements top

This work was supported by the Natural Science Foundation of China (No. 21174114), the Plan for the Yangtze River Scholar and Innovation Team Development of the Ministry of Education (No. IRT1177), the Scientific and Technical Plan Project of Gansu Province (No. 1204 GKCA006), the Natural Science Foundation of Gansu Province (No. 1010RJZA024) and the Scientific and Technical Innovation Project of Northwest Normal University (nwnu-kjcxgc-03–63).

references
References top

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Macgillivray, L. R., Groeneman, R. H. & Atwood, J. L. (1998). J. Am. Chem. Soc. 120, 2676–2677.

Masaoka, S., Furukawa, S., Chang, H. C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817–3819.

Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2008). Anal. Sci. 24, x7–x8.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X.-H. & Sun, L.-M. (2012). Acta Cryst. E68, m16.