organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 1,8-bis­­(4-methyl­phen­yl)-11-oxatri­cyclo­[6.2.1.02,7]undeca-2,4,6-triene-9,10-di­carboxyl­ate

aDepartment of Physics, P.T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cPostgraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 30 January 2013; accepted 24 February 2013; online 6 March 2013)

The title compound, C30H30O5, is the Diels–Alder adduct from 1,3-diphenyl­benzo[c]furan and diethyl maleate. The mol­ecule comprises a fused tricyclic system containing two five-membered rings, which are in envelope conformations with the O atom at the flap, and a six-membered ring adopting a boat conformation. The dihedral angle between the 4-methyl­phenyl substituents in the 1- and 8-positions is 62.1 (1)°. The ethyl group of one ester group and the eth­oxy group of the other ester group are disordered over two sets of sites, with occupancy ratios of 0.43 (2):0.57 (2) and 0.804 (7):0.196 (7), respectively. In the crystal, inversion dimers are formed through pairs of C—H⋯O inter­actions.

Related literature

For background to Diels–Alder reactions, see: Akio & Toshiki (2010[Akio, K. & Toshiki, N. (2010). J. Org. Chem. 75, 3133-3136.]). For related structures, see: Bailey et al. (1995[Bailey, J. H., Coulter, C. V., Pratt, A. J. & Robinson, W. T. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 589-592.]); Takahashi et al. (2003[Takahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973-974.]); Simpson et al. (2004[Simpson, M., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1081-o1083.]); Toze et al. (2010[Toze, F. A. A., Ershova, J. D., Obushak, M. D., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o1388-o1389.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C30H30O5

  • Mr = 470.54

  • Triclinic, [P \overline 1]

  • a = 9.8722 (3) Å

  • b = 10.7413 (3) Å

  • c = 13.3081 (3) Å

  • α = 109.319 (1)°

  • β = 105.045 (1)°

  • γ = 90.374 (1)°

  • V = 1279.45 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.953

  • 21475 measured reflections

  • 4505 independent reflections

  • 3754 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.03

  • 4505 reflections

  • 360 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.93 2.66 3.558 (2) 164
C11—H11⋯O2ii 0.93 2.66 3.433 (2) 141
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diels-Alder adducts are valuable synthetic intermediates and their use for the synthesis of natural products and of polycyclic aromatic hydrocarbons is well documented (Akio & Toshiki, 2010). The title compound, C30H30O5, comprises a fused tricyclic system and two 4-methylphenyl rings attached to this system (Fig.1). The tricyclic system consists of two 5-membered rings and one aromatic ring. In addition, two ethyl carboxylate units are attached to the tricyclic system. Geometrical parameters agree well with reported structures (Bailey et al. 1995; Takahashi et al. 2003; Simpson et al., 2004; Toze et al., 2010). The 5-membered ring C1\C2\C7\C8\O1 adopts an envelope conformation with atom O1 displaced by -(0.757) Å from the mean plane of the other ring atoms C1\C2\C7\C8. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.515 (1) Å, ϕ = 143.2 (2)°, ΔS(O1) = 0.007 (1)° and Δ2(O1) = 0.312 (1)°.The second 5-membered ring C1\ C23\C27\C8\O1 also adopts an envelope conformation with O1 displaced by -(0.835) Å from the mean plane of the other ring atoms C1\ C23\C27\C8. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.593 (1) Å, ϕ = -37.5 (1)°, ΔS(O1) = 0.012 (1)° and Δ2(O1) = 0.355 (1)°. The six membered ring C1/C2/C7/C8/C27/C23 adopts a boat conformation with puckering parameter q2 = 0.951 (1) Å, θ=89.6 (9)° and ϕ = 359.9 (9)°.

The dihedral angle between the rings C1/C2/C7/C8/O1 and C1/C23/C27/C8/O1 is 66.1 (1)°. The dihedral angle between the terminal 4-methylphenyl rings is 62.1 (1)°. One of the aromatic substituents (C9 - C15) is almost orthogonal to the plane formed by the six atoms C1, C2, C7, C8, C27 and C23 of the tricyclic ring, the dihedral angle being 84.8 (1)° (Nardelli, 1983). The atoms O5, C29 and C30 and C26 of ester groups are disordered over two sites with occupancy ratios of 0.804 (7): 0.196 (7) and 0.43 (2): 0.57 (2). The ester group is twisted from the mean plane of the tricyclic ring, with C30 towards C28 as evidenced by the torsion angle C30—C29—O5—C28 = 89.1 (5)°. The second ester group is co-planer with the attached trycyclic ring as evidenced by the torsion angle C24—O3—C25—C26 = -172 (9)°. Centrosymmetric dimers are formed by C—H···O interactions.

Related literature top

For background to Diels–Alder reactions, see: Akio & Toshiki (2010). For related structures, see: Bailey et al. (1995); Takahashi et al. (2003); Simpson et al. (2004); Toze et al. (2010). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

1,3-Di-p-tolylisobenzofuran 4 (1.00 g, 3.36 mmole) was dissolved in toluene (25 ml) and treated with 2 equivalents of dimethyl maleate (1.16 g, 1.15 ml, 6.74 mmole). The reaction mixture was refluxed and the reaction was monitored by TLC. After 8 h, the mixture was cooled to room temperature. The solvent was removed and the residue was purified by column chromatography (Silica gel, 10%, EA/hexane) to give the adduct as a white solid. Yield: 1.41 g (89%) and m.p. 179° C. This adduct was crystallized from CHCl3/CH3OH (3:1) by the slow evaporation method.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with (C—H= 0.93–0.96 Å), and Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. In one ester group the ethyl group and in the other ester group the ethoxy group are disordered over two sites with occupancy ratio of 0.43 (2): 0.57 (2), 0.804 (7): 0.196 (7), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Diethyl 1,8-bis(4-methylphenyl)-11-oxatricyclo[6.2.1.02,7]undeca-2,4,6-triene-9,10-dicarboxylate top
Crystal data top
C30H30O5Z = 2
Mr = 470.54F(000) = 500
Triclinic, P1Dx = 1.221 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8722 (3) ÅCell parameters from 7905 reflections
b = 10.7413 (3) Åθ = 2.0–25.0°
c = 13.3081 (3) ŵ = 0.08 mm1
α = 109.319 (1)°T = 293 K
β = 105.045 (1)°Block, colourless
γ = 90.374 (1)°0.30 × 0.20 × 0.20 mm
V = 1279.45 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4505 independent reflections
Radiation source: fine-focus sealed tube3754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.951, Tmax = 0.953k = 1212
21475 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3047P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4505 reflectionsΔρmax = 0.23 e Å3
360 parametersΔρmin = 0.18 e Å3
84 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (3)
Crystal data top
C30H30O5γ = 90.374 (1)°
Mr = 470.54V = 1279.45 (6) Å3
Triclinic, P1Z = 2
a = 9.8722 (3) ÅMo Kα radiation
b = 10.7413 (3) ŵ = 0.08 mm1
c = 13.3081 (3) ÅT = 293 K
α = 109.319 (1)°0.30 × 0.20 × 0.20 mm
β = 105.045 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4505 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3754 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.953Rint = 0.027
21475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03884 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
4505 reflectionsΔρmin = 0.18 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.16153 (14)1.11798 (13)0.42413 (11)0.0342 (3)
C20.18246 (14)1.12120 (14)0.31608 (11)0.0364 (3)
C30.25194 (16)1.21282 (16)0.29039 (13)0.0452 (4)
H30.29581.29260.34440.054*
C40.25420 (18)1.18202 (19)0.18119 (15)0.0555 (4)
H40.30111.24180.16160.067*
C50.18819 (18)1.06438 (19)0.10146 (14)0.0554 (4)
H50.19231.04540.02890.066*
C60.11570 (17)0.97368 (17)0.12708 (13)0.0482 (4)
H60.06970.89490.07270.058*
C70.11386 (14)1.00369 (14)0.23586 (11)0.0376 (3)
C80.05102 (14)0.93225 (13)0.29702 (11)0.0362 (3)
C90.02041 (15)0.78454 (14)0.24879 (12)0.0393 (3)
C100.08168 (15)0.70361 (14)0.30645 (12)0.0404 (3)
H100.14720.74080.37530.049*
C110.04615 (18)0.56778 (15)0.26241 (14)0.0485 (4)
H110.08810.51530.30270.058*
C120.04982 (19)0.50845 (15)0.16043 (14)0.0524 (4)
C130.0889 (3)0.36078 (18)0.11335 (19)0.0792 (6)
H13A0.17220.34010.05200.119*
H13B0.10650.33060.16950.119*
H13C0.01280.31740.08850.119*
C140.1090 (2)0.58990 (17)0.10260 (15)0.0589 (5)
H140.17270.55240.03290.071*
C150.07535 (18)0.72575 (16)0.14621 (14)0.0534 (4)
H150.11770.77820.10600.064*
C160.27490 (14)1.19021 (14)0.52804 (11)0.0366 (3)
C170.41180 (16)1.15731 (18)0.53553 (14)0.0532 (4)
H170.43091.09150.47640.064*
C180.51974 (18)1.2206 (2)0.62912 (15)0.0632 (5)
H180.61051.19580.63280.076*
C190.49591 (18)1.32047 (19)0.71785 (14)0.0566 (4)
C200.6155 (2)1.3927 (3)0.81909 (18)0.0905 (8)
H20A0.66961.45430.80270.136*
H20B0.67501.32980.83980.136*
H20C0.57791.43990.87910.136*
C210.35987 (18)1.35224 (17)0.71005 (13)0.0525 (4)
H210.34111.41850.76910.063*
C220.25038 (16)1.28856 (15)0.61707 (12)0.0434 (4)
H220.15941.31210.61440.052*
C230.00553 (14)1.13855 (13)0.42249 (11)0.0337 (3)
H230.00451.13980.49420.040*
C240.04509 (15)1.26460 (14)0.40726 (11)0.0373 (3)
C250.24375 (19)1.38633 (18)0.39529 (18)0.0635 (5)
H25A0.23261.39680.32810.076*0.43 (2)
H25B0.20021.46580.45740.076*0.43 (2)
H25C0.27421.37430.31700.076*0.57 (2)
H25D0.17681.46490.43290.076*0.57 (2)
C260.3945 (9)1.3647 (15)0.3868 (18)0.091 (3)0.43 (2)
H26A0.43911.29290.31970.136*0.43 (2)
H26B0.43851.44390.38590.136*0.43 (2)
H26C0.40401.34320.44930.136*0.43 (2)
C26'0.3651 (11)1.4015 (12)0.4408 (11)0.087 (2)0.57 (2)
H26D0.42391.31890.41070.130*0.57 (2)
H26E0.41831.46870.42140.130*0.57 (2)
H26F0.33281.42680.52000.130*0.57 (2)
C270.07443 (14)1.00649 (13)0.33396 (11)0.0347 (3)
H270.11360.95750.37210.042*
C280.19370 (16)1.02059 (15)0.24236 (13)0.0422 (4)
O10.15563 (9)0.97526 (9)0.40324 (7)0.0361 (2)
O20.02359 (12)1.34954 (11)0.39779 (10)0.0543 (3)
O30.17832 (11)1.27117 (10)0.41131 (9)0.0479 (3)
O40.18455 (12)1.07858 (13)0.18168 (10)0.0586 (3)
O50.3145 (3)0.9610 (3)0.2455 (3)0.0586 (7)0.804 (7)
C290.4441 (3)0.9681 (3)0.1669 (3)0.0782 (10)0.804 (7)
H29A0.43881.05030.15220.094*0.804 (7)
H29B0.52270.96710.19800.094*0.804 (7)
C300.4678 (5)0.8522 (5)0.0606 (3)0.1017 (14)0.804 (7)
H30A0.39710.86030.02470.152*0.804 (7)
H30B0.55940.85120.01260.152*0.804 (7)
H30C0.46190.77120.07650.152*0.804 (7)
O5'0.2954 (12)0.9430 (15)0.2035 (11)0.064 (2)0.196 (7)
C29'0.4114 (12)0.9582 (17)0.1155 (14)0.077 (3)0.196 (7)
H29C0.38180.94760.04940.093*0.196 (7)
H29D0.44531.04480.13950.093*0.196 (7)
C30'0.5239 (16)0.8499 (19)0.0939 (19)0.104 (5)0.196 (7)
H30D0.48920.76520.06830.156*0.196 (7)
H30E0.60580.85560.03850.156*0.196 (7)
H30F0.54860.85990.16120.156*0.196 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (7)0.0306 (7)0.0349 (7)0.0041 (5)0.0088 (6)0.0109 (6)
C20.0330 (7)0.0402 (8)0.0362 (7)0.0066 (6)0.0103 (6)0.0125 (6)
C30.0409 (8)0.0479 (9)0.0481 (9)0.0005 (7)0.0134 (7)0.0173 (7)
C40.0531 (10)0.0686 (11)0.0566 (10)0.0035 (8)0.0230 (8)0.0306 (9)
C50.0562 (10)0.0763 (12)0.0407 (9)0.0097 (9)0.0200 (8)0.0240 (9)
C60.0495 (9)0.0536 (9)0.0361 (8)0.0078 (7)0.0112 (7)0.0091 (7)
C70.0360 (7)0.0395 (8)0.0359 (7)0.0067 (6)0.0090 (6)0.0119 (6)
C80.0370 (7)0.0348 (7)0.0330 (7)0.0049 (6)0.0051 (6)0.0104 (6)
C90.0407 (8)0.0352 (8)0.0405 (8)0.0050 (6)0.0124 (6)0.0101 (6)
C100.0417 (8)0.0385 (8)0.0411 (8)0.0076 (6)0.0136 (6)0.0119 (6)
C110.0582 (10)0.0386 (8)0.0545 (10)0.0128 (7)0.0228 (8)0.0179 (7)
C120.0623 (10)0.0361 (8)0.0558 (10)0.0021 (7)0.0230 (8)0.0071 (7)
C130.1085 (17)0.0395 (10)0.0787 (14)0.0028 (10)0.0258 (13)0.0067 (9)
C140.0661 (11)0.0458 (9)0.0473 (10)0.0056 (8)0.0021 (8)0.0040 (8)
C150.0610 (10)0.0415 (9)0.0464 (9)0.0022 (7)0.0000 (8)0.0121 (7)
C160.0367 (7)0.0369 (7)0.0354 (7)0.0023 (6)0.0078 (6)0.0132 (6)
C170.0410 (9)0.0607 (10)0.0460 (9)0.0083 (7)0.0083 (7)0.0062 (8)
C180.0366 (9)0.0819 (13)0.0579 (11)0.0053 (8)0.0048 (8)0.0136 (10)
C190.0463 (9)0.0692 (11)0.0438 (9)0.0116 (8)0.0026 (7)0.0137 (8)
C200.0609 (12)0.123 (2)0.0564 (12)0.0219 (13)0.0039 (10)0.0063 (12)
C210.0569 (10)0.0503 (9)0.0393 (9)0.0051 (8)0.0113 (7)0.0030 (7)
C220.0411 (8)0.0431 (8)0.0417 (8)0.0023 (6)0.0109 (6)0.0095 (7)
C230.0352 (7)0.0345 (7)0.0316 (7)0.0046 (6)0.0087 (6)0.0119 (6)
C240.0393 (8)0.0354 (7)0.0349 (7)0.0052 (6)0.0090 (6)0.0102 (6)
C250.0553 (10)0.0506 (10)0.0903 (14)0.0237 (8)0.0199 (10)0.0313 (10)
C260.051 (4)0.080 (6)0.151 (9)0.023 (3)0.028 (5)0.053 (6)
C26'0.068 (4)0.083 (5)0.127 (6)0.040 (3)0.044 (4)0.047 (5)
C270.0352 (7)0.0334 (7)0.0361 (7)0.0027 (6)0.0081 (6)0.0141 (6)
C280.0403 (8)0.0376 (8)0.0431 (8)0.0057 (6)0.0047 (7)0.0119 (7)
O10.0377 (5)0.0324 (5)0.0344 (5)0.0049 (4)0.0045 (4)0.0106 (4)
O20.0534 (7)0.0397 (6)0.0768 (8)0.0059 (5)0.0227 (6)0.0256 (6)
O30.0405 (6)0.0424 (6)0.0644 (7)0.0132 (5)0.0161 (5)0.0219 (5)
O40.0597 (7)0.0728 (8)0.0491 (7)0.0125 (6)0.0080 (6)0.0337 (6)
O50.0323 (9)0.0749 (13)0.0728 (16)0.0031 (8)0.0011 (10)0.0415 (13)
C290.0372 (14)0.107 (2)0.089 (2)0.0006 (13)0.0061 (14)0.0509 (19)
C300.075 (3)0.137 (3)0.084 (3)0.027 (2)0.0103 (18)0.053 (2)
O5'0.037 (4)0.087 (4)0.073 (5)0.016 (3)0.001 (4)0.046 (4)
C29'0.037 (5)0.110 (6)0.079 (6)0.010 (4)0.006 (4)0.042 (5)
C30'0.063 (8)0.126 (9)0.110 (9)0.004 (7)0.010 (7)0.048 (8)
Geometric parameters (Å, º) top
C1—O11.4626 (16)C20—H20C0.9600
C1—C161.4973 (19)C21—C221.380 (2)
C1—C21.5161 (19)C21—H210.9300
C1—C231.5528 (18)C22—H220.9300
C2—C31.375 (2)C23—C241.5039 (19)
C2—C71.383 (2)C23—C271.5557 (19)
C3—C41.386 (2)C23—H230.9800
C3—H30.9300C24—O21.1918 (17)
C4—C51.375 (3)C24—O31.3317 (17)
C4—H40.9300C25—O31.4513 (19)
C5—C61.384 (2)C25—C26'1.464 (6)
C5—H50.9300C25—C261.474 (8)
C6—C71.380 (2)C25—H25A0.9700
C6—H60.9300C25—H25B0.9700
C7—C81.518 (2)C25—H25C0.9700
C8—O11.4429 (16)C25—H25D0.9700
C8—C91.4967 (19)C26—H26A0.9600
C8—C271.5750 (19)C26—H26B0.9600
C9—C151.381 (2)C26—H26C0.9600
C9—C101.385 (2)C26'—H26D0.9600
C10—C111.384 (2)C26'—H26E0.9600
C10—H100.9300C26'—H26F0.9600
C11—C121.378 (2)C27—C281.5082 (19)
C11—H110.9300C27—H270.9800
C12—C141.385 (2)C28—O5'1.185 (12)
C12—C131.505 (2)C28—O41.1908 (18)
C13—H13A0.9600C28—O51.367 (3)
C13—H13B0.9600O5—C291.448 (3)
C13—H13C0.9600C29—C301.506 (5)
C14—C151.382 (2)C29—H29A0.9700
C14—H140.9300C29—H29B0.9700
C15—H150.9300C30—H30A0.9600
C16—C221.379 (2)C30—H30B0.9600
C16—C171.386 (2)C30—H30C0.9600
C17—C181.375 (2)O5'—C29'1.464 (9)
C17—H170.9300C29'—C30'1.505 (10)
C18—C191.382 (3)C29'—H29C0.9700
C18—H180.9300C29'—H29D0.9700
C19—C211.374 (2)C30'—H30D0.9600
C19—C201.511 (2)C30'—H30E0.9600
C20—H20A0.9600C30'—H30F0.9600
C20—H20B0.9600
O1—C1—C16110.12 (10)C22—C21—H21119.1
O1—C1—C2100.29 (10)C16—C22—C21120.49 (14)
C16—C1—C2117.12 (11)C16—C22—H22119.8
O1—C1—C2399.13 (10)C21—C22—H22119.8
C16—C1—C23118.59 (11)C24—C23—C1116.13 (11)
C2—C1—C23108.50 (11)C24—C23—C27116.58 (11)
C3—C2—C7121.60 (13)C1—C23—C27102.32 (10)
C3—C2—C1132.64 (13)C24—C23—H23107.1
C7—C2—C1105.76 (12)C1—C23—H23107.1
C2—C3—C4117.65 (15)C27—C23—H23107.1
C2—C3—H3121.2O2—C24—O3124.22 (13)
C4—C3—H3121.2O2—C24—C23126.09 (13)
C5—C4—C3120.99 (15)O3—C24—C23109.61 (12)
C5—C4—H4119.5O3—C25—C26'108.0 (4)
C3—C4—H4119.5O3—C25—C26107.3 (6)
C4—C5—C6121.24 (15)C26'—C25—C2626.7 (5)
C4—C5—H5119.4O3—C25—H25A110.2
C6—C5—H5119.4C26'—C25—H25A130.6
C7—C6—C5117.93 (15)C26—C25—H25A110.2
C7—C6—H6121.0O3—C25—H25B110.2
C5—C6—H6121.0C26'—C25—H25B85.8
C6—C7—C2120.57 (14)C26—C25—H25B110.2
C6—C7—C8134.20 (14)H25A—C25—H25B108.5
C2—C7—C8105.22 (12)O3—C25—H25C110.1
O1—C8—C9112.25 (11)C26'—C25—H25C110.1
O1—C8—C7100.69 (10)C26—C25—H25C86.1
C9—C8—C7118.93 (12)H25A—C25—H25C26.2
O1—C8—C2798.67 (10)H25B—C25—H25C128.7
C9—C8—C27113.99 (11)O3—C25—H25D110.1
C7—C8—C27109.66 (11)C26'—C25—H25D110.2
C15—C9—C10118.17 (14)C26—C25—H25D131.3
C15—C9—C8120.12 (13)H25A—C25—H25D84.6
C10—C9—C8121.66 (13)H25B—C25—H25D26.4
C11—C10—C9120.54 (15)H25C—C25—H25D108.4
C11—C10—H10119.7C25—C26—H26A109.5
C9—C10—H10119.7C25—C26—H26B109.5
C12—C11—C10121.65 (15)C25—C26—H26C109.5
C12—C11—H11119.2C25—C26'—H26D109.5
C10—C11—H11119.2C25—C26'—H26E109.5
C11—C12—C14117.43 (15)C25—C26'—H26F109.5
C11—C12—C13121.41 (17)C28—C27—C23115.71 (11)
C14—C12—C13121.17 (17)C28—C27—C8116.03 (11)
C12—C13—H13A109.5C23—C27—C8101.22 (10)
C12—C13—H13B109.5C28—C27—H27107.8
H13A—C13—H13B109.5C23—C27—H27107.8
C12—C13—H13C109.5C8—C27—H27107.8
H13A—C13—H13C109.5O5'—C28—O4110.8 (6)
H13B—C13—H13C109.5O5'—C28—O526.3 (6)
C15—C14—C12121.43 (16)O4—C28—O5126.40 (18)
C15—C14—H14119.3O5'—C28—C27120.1 (6)
C12—C14—H14119.3O4—C28—C27125.79 (14)
C9—C15—C14120.77 (16)O5—C28—C27107.73 (16)
C9—C15—H15119.6C8—O1—C198.05 (9)
C14—C15—H15119.6C24—O3—C25116.27 (12)
C22—C16—C17118.01 (14)C28—O5—C29116.9 (2)
C22—C16—C1123.37 (13)O5—C29—C30110.0 (3)
C17—C16—C1118.62 (13)O5—C29—H29A109.7
C18—C17—C16120.91 (15)C30—C29—H29A109.7
C18—C17—H17119.5O5—C29—H29B109.7
C16—C17—H17119.5C30—C29—H29B109.7
C17—C18—C19121.23 (16)H29A—C29—H29B108.2
C17—C18—H18119.4C28—O5'—C29'119.8 (10)
C19—C18—H18119.4O5'—C29'—C30'104.5 (11)
C21—C19—C18117.54 (15)O5'—C29'—H29C110.8
C21—C19—C20121.38 (17)C30'—C29'—H29C110.8
C18—C19—C20121.07 (17)O5'—C29'—H29D110.8
C19—C20—H20A109.5C30'—C29'—H29D110.8
C19—C20—H20B109.5H29C—C29'—H29D108.9
H20A—C20—H20B109.5C29'—C30'—H30D109.5
C19—C20—H20C109.5C29'—C30'—H30E109.5
H20A—C20—H20C109.5H30D—C30'—H30E109.5
H20B—C20—H20C109.5C29'—C30'—H30F109.5
C19—C21—C22121.80 (15)H30D—C30'—H30F109.5
C19—C21—H21119.1H30E—C30'—H30F109.5
O1—C1—C2—C3148.50 (15)C18—C19—C21—C220.7 (3)
C16—C1—C2—C329.4 (2)C20—C19—C21—C22178.76 (18)
C23—C1—C2—C3108.15 (17)C17—C16—C22—C210.4 (2)
O1—C1—C2—C731.14 (13)C1—C16—C22—C21179.34 (14)
C16—C1—C2—C7150.21 (12)C19—C21—C22—C160.2 (3)
C23—C1—C2—C772.21 (13)O1—C1—C23—C24162.37 (11)
C7—C2—C3—C41.6 (2)C16—C1—C23—C2478.66 (15)
C1—C2—C3—C4177.97 (15)C2—C1—C23—C2458.21 (15)
C2—C3—C4—C50.5 (2)O1—C1—C23—C2734.26 (12)
C3—C4—C5—C60.9 (3)C16—C1—C23—C27153.23 (11)
C4—C5—C6—C71.2 (2)C2—C1—C23—C2769.90 (12)
C5—C6—C7—C20.1 (2)C1—C23—C24—O20.9 (2)
C5—C6—C7—C8178.61 (15)C27—C23—C24—O2121.67 (16)
C3—C2—C7—C61.3 (2)C1—C23—C24—O3177.87 (11)
C1—C2—C7—C6178.37 (13)C27—C23—C24—O361.39 (15)
C3—C2—C7—C8179.61 (13)C24—C23—C27—C280.28 (17)
C1—C2—C7—C80.70 (14)C1—C23—C27—C28127.54 (12)
C6—C7—C8—O1146.03 (16)C24—C23—C27—C8126.58 (12)
C2—C7—C8—O132.84 (13)C1—C23—C27—C81.25 (12)
C6—C7—C8—C923.0 (2)O1—C8—C27—C28162.98 (11)
C2—C7—C8—C9155.84 (12)C9—C8—C27—C2877.88 (15)
C6—C7—C8—C27110.65 (17)C7—C8—C27—C2858.28 (15)
C2—C7—C8—C2770.48 (13)O1—C8—C27—C2336.89 (11)
O1—C8—C9—C15178.75 (13)C9—C8—C27—C23156.03 (11)
C7—C8—C9—C1561.68 (19)C7—C8—C27—C2367.81 (13)
C27—C8—C9—C1570.13 (18)C23—C27—C28—O5'145.8 (9)
O1—C8—C9—C103.92 (18)C8—C27—C28—O5'95.8 (9)
C7—C8—C9—C10120.99 (15)C23—C27—C28—O456.7 (2)
C27—C8—C9—C10107.20 (15)C8—C27—C28—O461.7 (2)
C15—C9—C10—C110.7 (2)C23—C27—C28—O5120.24 (18)
C8—C9—C10—C11176.67 (13)C8—C27—C28—O5121.37 (18)
C9—C10—C11—C120.4 (2)C9—C8—O1—C1178.96 (11)
C10—C11—C12—C140.6 (2)C7—C8—O1—C151.43 (11)
C10—C11—C12—C13179.54 (17)C27—C8—O1—C160.60 (11)
C11—C12—C14—C151.3 (3)C16—C1—O1—C8174.89 (10)
C13—C12—C14—C15178.88 (18)C2—C1—O1—C850.84 (11)
C10—C9—C15—C140.1 (2)C23—C1—O1—C860.00 (11)
C8—C9—C15—C14177.36 (15)O2—C24—O3—C254.4 (2)
C12—C14—C15—C90.9 (3)C23—C24—O3—C25178.61 (13)
O1—C1—C16—C22122.79 (14)C26'—C25—O3—C24160.0 (6)
C2—C1—C16—C22123.55 (15)C26—C25—O3—C24172.0 (9)
C23—C1—C16—C229.7 (2)O5'—C28—O5—C2960.0 (15)
O1—C1—C16—C1757.42 (17)O4—C28—O5—C290.5 (4)
C2—C1—C16—C1756.24 (18)C27—C28—O5—C29177.4 (2)
C23—C1—C16—C17170.51 (13)C28—O5—C29—C3089.0 (5)
C22—C16—C17—C180.2 (3)O4—C28—O5'—C29'20.1 (14)
C1—C16—C17—C18180.00 (16)O5—C28—O5'—C29'111 (2)
C16—C17—C18—C191.1 (3)C27—C28—O5'—C29'179.3 (9)
C17—C18—C19—C211.3 (3)C28—O5'—C29'—C30'176 (2)
C17—C18—C19—C20178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.932.663.558 (2)164
C11—H11···O2ii0.932.663.433 (2)141
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC30H30O5
Mr470.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8722 (3), 10.7413 (3), 13.3081 (3)
α, β, γ (°)109.319 (1), 105.045 (1), 90.374 (1)
V3)1279.45 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.951, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
21475, 4505, 3754
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.03
No. of reflections4505
No. of parameters360
No. of restraints84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.932.663.558 (2)163.6
C11—H11···O2ii0.932.663.433 (2)141.1
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationAkio, K. & Toshiki, N. (2010). J. Org. Chem. 75, 3133–3136.  Web of Science PubMed Google Scholar
First citationBailey, J. H., Coulter, C. V., Pratt, A. J. & Robinson, W. T. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 589–592.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, M., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1081–o1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973–974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationToze, F. A. A., Ershova, J. D., Obushak, M. D., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o1388–o1389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds