supplementary materials


im2423 scheme

Acta Cryst. (2013). E69, o614-o615    [ doi:10.1107/S1600536813007903 ]

5,11-Ditosyl-5H,11H-dibenzo[b,f][1,5]diazocine-6,12-dione acetic acid hemisolvate

N. Abbassi, O. Bassou, E. M. Rakib, M. Saadi and L. El Ammari

Abstract top

The molecular structure of the title compound, C28H22N2O6S2·0.5CH3COOH, is built up from three fused rings, two six and one eight membered. The eight-membered ring shows a boat conformation and the dihedral angle between the two benzene groups attached thereto is 66.43 (11)°, resulting in a V-shaped geometry. Two tosyl substituents are bound to the N atoms. The planes through the tolyl rings are roughly perpendicular, as indicated by the dihedral angle of 82.44 (12)°. In the crystal, the molecule and its inversion-related symmetry-equivalent are linked to the acetic acid solvent molecule by non-classical O-H...O and C-H...O hydrogen bonds. Two half-occupied acetic acid solvent molecules are disordered at the same site and linked by a center of symmetry.

Comment top

Sulfonamides constitute an important class of drugs. They possess various types of pharmacological activities such as antibacterial, hypoglycemic, anti-inflammatory, and antitumor (Lopez, et al., 2010), as well as anti-carbonic anhydrase (Brzozowski, et al., 2010), hypoglycemic (Drew, 2000), and anticancer activity (Garaj, et al., 2005). The present work is part of research concerning the synthesis of some new N-(6 (4)-indazolyl)arylsulfonamide derivatives reported recently by our group. Some of these compounds showed an important antiproliferative activity against some human and murine cell lines (Abbassi, et al., 2012, Bouissane et al., 2006).

The three fused six- and eight-membered rings in the molecule of the title compound, are linked to two tolyl rings by sulfonyl groups as shown in Fig.1. The eight-membered ring displays a boat conformation, as indicated by the total puckering amplitude QT = 1.4807 (22) Å and spherical polar angles θ2 = 89.89 (8) and θ3 = 177 (3)° (Cremer & Pople, 1975). The dihedral angle between the two phenyl groups attached to the boat ring is 66.43 (11)°, resulting in a V shaped geometry. The planes through the two tolyl rings (C15 to C20) and (C22 to C27) are almost perpendicular as indicated by the dihedral angle between them of 82.44 (12)°.

In the crystal, each molecule and its symmetry through the inversion center are linked to the acetic acid solvent by O8—H8···O3, C30—H30c···O3i, C16—H16···O2 and C11—H11···O4ii non-classical hydrogen bonds (Table 2).

Two half acetic acid solvent molecules are disordered at the same site of the crystal structure and linked by a center of symmetry.

Related literature top

For the pharmacological activity of sulfonamides, see: Brzozowski et al. (2010); Drew (2000); Garaj et al. (2005). For their antiproliferative activity, see: Abbassi et al. (2012); Bouissane et al. (2006); Lopez et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-nitrobenzaldehyde (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was stirred for 1 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was adjusted to 7–8 by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate : hexane 3:7). Colourless prisms of the title compound suitable for X-ray structure determination were collected after recrystallization from ethyl acetate : hexane (3:7 v/v) by slow evaporation of the solvent at room temperature after some days.

Refinement top

H atoms were located from a difference Fourier map and treated as riding with C–H = 0.96 and C–H = 0.93 Å for methyl and aromatic CH, respectively. Thermal parameters of hydrogen atoms were refined with Uiso(H) = 1.2 Ueq for aromatic and Uiso(H) = 1.5 Ueq for methyl hydrogen atoms. The refinement of the two half molecule acetic acid required the use of some constraints. Indeed, C29 and O8 occupy the same position with equal share and their atomic displacments are coupled. All sites of the atoms forming the acetic acid molecule are half filled except the one containing C29 and O8. The two half acetic acid molecule are linked by a center of symmetry.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
5,11-Ditosyl-5H,11H-dibenzo[b,f][1,5]diazocine-6,12-dione acetic acid hemisolvate top
Crystal data top
C28H22N2O6S2·0.5C2H4O2Z = 2
Mr = 576.62F(000) = 600
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6933 (11) ÅCell parameters from 5446 reflections
b = 11.1746 (18) Åθ = 2.4–26.4°
c = 14.8051 (19) ŵ = 0.25 mm1
α = 87.042 (4)°T = 296 K
β = 74.370 (5)°Prismatic, colourless
γ = 75.097 (4)°0.41 × 0.35 × 0.27 mm
V = 1338.2 (3) Å3
Data collection top
Bruker X8 APEX
diffractometer
4262 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.4°, θmin = 2.4°
φ and ω scansh = 108
19664 measured reflectionsk = 1313
5447 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.7987P]
where P = (Fo2 + 2Fc2)/3
5446 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C28H22N2O6S2·0.5C2H4O2γ = 75.097 (4)°
Mr = 576.62V = 1338.2 (3) Å3
Triclinic, P1Z = 2
a = 8.6933 (11) ÅMo Kα radiation
b = 11.1746 (18) ŵ = 0.25 mm1
c = 14.8051 (19) ÅT = 296 K
α = 87.042 (4)°0.41 × 0.35 × 0.27 mm
β = 74.370 (5)°
Data collection top
Bruker X8 APEX
diffractometer
4262 reflections with I > 2σ(I)
19664 measured reflectionsRint = 0.039
5447 independent reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.41 e Å3
S = 1.02Δρmin = 0.47 e Å3
5446 reflectionsAbsolute structure: ?
370 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1314 (2)0.04736 (19)0.66644 (14)0.0182 (4)
C20.1389 (3)0.0156 (2)0.58638 (15)0.0243 (5)
H20.12280.02800.53310.029*
C30.1703 (3)0.1427 (2)0.58609 (16)0.0325 (5)
H30.17340.18500.53290.039*
C40.1973 (3)0.2080 (2)0.66490 (16)0.0352 (6)
H40.21970.29400.66420.042*
C50.1909 (3)0.1454 (2)0.74484 (15)0.0247 (5)
H50.21030.18960.79730.030*
C60.1555 (2)0.01681 (19)0.74673 (14)0.0176 (4)
C70.1413 (2)0.04925 (19)0.83511 (14)0.0169 (4)
C80.1527 (2)0.13023 (18)0.83944 (13)0.0152 (4)
C90.2611 (2)0.06755 (18)0.89469 (14)0.0171 (4)
H90.24250.03100.94990.021*
C100.3982 (2)0.06016 (19)0.86638 (14)0.0205 (4)
H100.47060.01660.90210.025*
C110.4279 (3)0.1172 (2)0.78530 (14)0.0224 (5)
H110.52060.11230.76720.027*
C120.3208 (2)0.1815 (2)0.73125 (14)0.0209 (4)
H120.34190.22040.67720.025*
C130.1806 (2)0.18787 (18)0.75783 (14)0.0175 (4)
C140.0645 (3)0.2544 (2)0.69667 (15)0.0232 (5)
C150.2483 (3)0.24962 (19)0.48932 (14)0.0194 (4)
C160.1234 (3)0.3396 (2)0.46486 (16)0.0274 (5)
H160.04450.39380.51010.033*
C170.1187 (3)0.3471 (2)0.37219 (17)0.0303 (5)
H170.03520.40660.35520.036*
C180.2361 (3)0.2677 (2)0.30412 (15)0.0250 (5)
C190.3592 (3)0.1785 (2)0.33051 (16)0.0278 (5)
H190.43840.12470.28520.033*
C200.3662 (3)0.1682 (2)0.42303 (15)0.0268 (5)
H200.44850.10780.44020.032*
C210.2294 (3)0.2763 (2)0.20329 (17)0.0356 (6)
H21A0.31940.21440.16620.053*
H21B0.23770.35700.18040.053*
H21C0.12670.26300.19910.053*
C220.1091 (2)0.31288 (19)0.92998 (14)0.0195 (4)
C230.0855 (3)0.4133 (2)0.87229 (18)0.0333 (6)
H230.00720.43460.84920.040*
C240.2022 (3)0.4814 (2)0.8495 (2)0.0395 (6)
H240.18670.54940.81110.047*
C250.3419 (3)0.4508 (2)0.88264 (18)0.0324 (6)
C260.3612 (3)0.3508 (2)0.94126 (17)0.0292 (5)
H260.45320.33010.96500.035*
C270.2464 (3)0.2812 (2)0.96518 (15)0.0239 (5)
H270.26110.21391.00440.029*
C280.4722 (3)0.5229 (3)0.8558 (2)0.0508 (8)
H28A0.44060.58870.81500.076*
H28B0.57600.46870.82410.076*
H28C0.48270.55710.91130.076*
O80.4362 (4)0.5295 (3)0.47416 (19)0.0648 (8)0.50
H80.33840.50540.50600.097*0.50
C290.4362 (4)0.5295 (3)0.47416 (19)0.0648 (8)0.50
C300.4689 (5)0.4823 (4)0.3786 (3)0.0253 (9)0.50
H30A0.37990.52540.35290.038*0.50
H30B0.47620.39510.37900.038*0.50
H30C0.57070.49710.34080.038*0.50
O70.3037 (5)0.5905 (3)0.5167 (3)0.0489 (10)0.50
N10.0986 (2)0.18137 (16)0.66594 (12)0.0186 (4)
N20.00829 (19)0.13646 (15)0.86839 (11)0.0164 (4)
O10.25131 (17)0.03120 (13)0.87404 (10)0.0209 (3)
O20.1071 (2)0.36032 (16)0.67434 (14)0.0436 (5)
O30.2235 (2)0.36337 (15)0.64412 (11)0.0315 (4)
O40.40207 (18)0.15004 (16)0.61277 (11)0.0303 (4)
O50.20005 (18)0.30902 (15)0.96957 (11)0.0310 (4)
O60.0125 (2)0.15277 (15)1.04057 (10)0.0287 (4)
S10.25694 (6)0.24198 (5)0.60663 (4)0.02218 (14)
S20.04108 (6)0.22883 (5)0.96340 (4)0.02004 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (10)0.0221 (11)0.0204 (10)0.0069 (8)0.0035 (8)0.0043 (8)
C20.0239 (11)0.0320 (12)0.0178 (10)0.0102 (10)0.0045 (9)0.0051 (9)
C30.0425 (14)0.0328 (13)0.0190 (11)0.0085 (11)0.0029 (10)0.0051 (9)
C40.0491 (16)0.0214 (12)0.0251 (12)0.0001 (11)0.0009 (11)0.0022 (9)
C50.0255 (12)0.0243 (12)0.0178 (10)0.0008 (9)0.0021 (9)0.0038 (9)
C60.0110 (9)0.0225 (11)0.0175 (10)0.0033 (8)0.0022 (8)0.0030 (8)
C70.0134 (10)0.0202 (10)0.0186 (10)0.0086 (8)0.0038 (8)0.0069 (8)
C80.0105 (9)0.0169 (10)0.0200 (10)0.0036 (8)0.0066 (8)0.0015 (8)
C90.0145 (10)0.0211 (10)0.0168 (10)0.0056 (8)0.0051 (8)0.0009 (8)
C100.0139 (10)0.0264 (11)0.0235 (11)0.0101 (9)0.0042 (8)0.0016 (9)
C110.0160 (10)0.0329 (12)0.0224 (11)0.0096 (9)0.0085 (8)0.0006 (9)
C120.0176 (10)0.0272 (12)0.0196 (10)0.0046 (9)0.0093 (8)0.0036 (8)
C130.0132 (10)0.0168 (10)0.0223 (10)0.0036 (8)0.0049 (8)0.0013 (8)
C140.0197 (11)0.0251 (12)0.0279 (11)0.0085 (9)0.0097 (9)0.0078 (9)
C150.0216 (11)0.0240 (11)0.0187 (10)0.0144 (9)0.0092 (8)0.0095 (8)
C160.0365 (13)0.0183 (11)0.0285 (12)0.0044 (10)0.0131 (10)0.0013 (9)
C170.0431 (14)0.0190 (11)0.0345 (13)0.0049 (10)0.0237 (11)0.0059 (9)
C180.0340 (13)0.0258 (12)0.0243 (11)0.0173 (10)0.0149 (10)0.0079 (9)
C190.0229 (11)0.0371 (13)0.0230 (11)0.0092 (10)0.0043 (9)0.0027 (10)
C200.0164 (11)0.0371 (13)0.0271 (12)0.0072 (10)0.0075 (9)0.0094 (10)
C210.0499 (16)0.0386 (14)0.0274 (12)0.0171 (12)0.0204 (11)0.0054 (10)
C220.0189 (10)0.0189 (10)0.0235 (10)0.0088 (8)0.0062 (8)0.0018 (8)
C230.0315 (13)0.0292 (13)0.0463 (15)0.0118 (11)0.0201 (11)0.0097 (11)
C240.0443 (16)0.0269 (13)0.0523 (16)0.0172 (12)0.0155 (13)0.0126 (12)
C250.0271 (13)0.0231 (12)0.0455 (15)0.0120 (10)0.0002 (11)0.0082 (10)
C260.0215 (11)0.0292 (12)0.0418 (14)0.0104 (10)0.0111 (10)0.0081 (10)
C270.0258 (12)0.0239 (11)0.0278 (11)0.0102 (9)0.0127 (9)0.0005 (9)
C280.0350 (15)0.0342 (15)0.081 (2)0.0223 (13)0.0026 (14)0.0080 (14)
O80.0622 (18)0.081 (2)0.0552 (17)0.0210 (16)0.0189 (14)0.0014 (15)
C290.0622 (18)0.081 (2)0.0552 (17)0.0210 (16)0.0189 (14)0.0014 (15)
C300.020 (2)0.024 (2)0.031 (2)0.0067 (18)0.0053 (18)0.0017 (18)
O70.042 (2)0.036 (2)0.048 (2)0.0165 (18)0.0000 (18)0.0187 (18)
N10.0158 (9)0.0224 (9)0.0197 (9)0.0085 (7)0.0056 (7)0.0066 (7)
N20.0119 (8)0.0215 (9)0.0184 (8)0.0061 (7)0.0063 (6)0.0018 (7)
O10.0144 (7)0.0274 (8)0.0258 (8)0.0099 (6)0.0107 (6)0.0090 (6)
O20.0271 (9)0.0274 (10)0.0717 (13)0.0078 (7)0.0091 (9)0.0254 (9)
O30.0396 (10)0.0400 (10)0.0240 (8)0.0280 (8)0.0070 (7)0.0044 (7)
O40.0172 (8)0.0515 (11)0.0263 (8)0.0142 (7)0.0102 (6)0.0159 (7)
O50.0176 (8)0.0341 (9)0.0403 (10)0.0046 (7)0.0046 (7)0.0164 (7)
O60.0370 (9)0.0392 (9)0.0173 (8)0.0229 (8)0.0071 (7)0.0027 (7)
S10.0199 (3)0.0336 (3)0.0191 (3)0.0163 (2)0.0078 (2)0.0087 (2)
S20.0173 (3)0.0259 (3)0.0197 (3)0.0102 (2)0.0041 (2)0.0039 (2)
Geometric parameters (Å, º) top
C1—C21.387 (3)C18—C211.507 (3)
C1—C61.393 (3)C19—C201.385 (3)
C1—N11.451 (3)C19—H190.9300
C2—C31.376 (3)C20—H200.9300
C2—H20.9300C21—H21A0.9600
C3—C41.386 (3)C21—H21B0.9600
C3—H30.9300C21—H21C0.9600
C4—C51.387 (3)C22—C231.381 (3)
C4—H40.9300C22—C271.386 (3)
C5—C61.390 (3)C22—S21.751 (2)
C5—H50.9300C23—C241.382 (3)
C6—C71.496 (3)C23—H230.9300
C7—O11.214 (2)C24—C251.386 (4)
C7—N21.392 (3)C24—H240.9300
C8—C91.383 (3)C25—C261.382 (3)
C8—C131.390 (3)C25—C281.511 (3)
C8—N21.450 (2)C26—C271.382 (3)
C9—C101.388 (3)C26—H260.9300
C9—H90.9300C27—H270.9300
C10—C111.385 (3)C28—H28A0.9600
C10—H100.9300C28—H28B0.9600
C11—C121.380 (3)C28—H28C0.9600
C11—H110.9300O8—O71.199 (4)
C12—C131.397 (3)O8—C301.465 (5)
C12—H120.9300O8—O8i1.510 (5)
C13—C141.488 (3)O8—H80.9518
C14—O21.203 (3)C30—H30A0.9600
C14—N11.407 (3)C30—H30B0.9600
C15—C201.382 (3)C30—H30C0.9600
C15—C161.391 (3)O7—H80.9283
C15—S11.755 (2)N1—S11.7000 (17)
C16—C171.381 (3)N2—S21.7052 (17)
C16—H160.9300O3—S11.4215 (17)
C17—C181.384 (3)O4—S11.4287 (16)
C17—H170.9300O5—S21.4229 (16)
C18—C191.389 (3)O6—S21.4260 (16)
C2—C1—C6120.69 (19)C18—C21—H21B109.5
C2—C1—N1119.37 (18)H21A—C21—H21B109.5
C6—C1—N1119.95 (18)C18—C21—H21C109.5
C3—C2—C1119.8 (2)H21A—C21—H21C109.5
C3—C2—H2120.1H21B—C21—H21C109.5
C1—C2—H2120.1C23—C22—C27120.87 (19)
C2—C3—C4120.2 (2)C23—C22—S2119.55 (16)
C2—C3—H3119.9C27—C22—S2119.52 (16)
C4—C3—H3119.9C22—C23—C24118.8 (2)
C3—C4—C5120.1 (2)C22—C23—H23120.6
C3—C4—H4119.9C24—C23—H23120.6
C5—C4—H4119.9C23—C24—C25121.6 (2)
C4—C5—C6120.2 (2)C23—C24—H24119.2
C4—C5—H5119.9C25—C24—H24119.2
C6—C5—H5119.9C26—C25—C24118.4 (2)
C5—C6—C1118.95 (19)C26—C25—C28119.8 (2)
C5—C6—C7119.38 (17)C24—C25—C28121.8 (2)
C1—C6—C7121.67 (18)C27—C26—C25121.2 (2)
O1—C7—N2122.21 (19)C27—C26—H26119.4
O1—C7—C6123.48 (18)C25—C26—H26119.4
N2—C7—C6114.29 (16)C26—C27—C22119.2 (2)
C9—C8—C13121.32 (17)C26—C27—H27120.4
C9—C8—N2118.90 (17)C22—C27—H27120.4
C13—C8—N2119.78 (17)C25—C28—H28A109.5
C8—C9—C10118.93 (18)C25—C28—H28B109.5
C8—C9—H9120.5H28A—C28—H28B109.5
C10—C9—H9120.5C25—C28—H28C109.5
C11—C10—C9120.46 (19)H28A—C28—H28C109.5
C11—C10—H10119.8H28B—C28—H28C109.5
C9—C10—H10119.8O7—O8—C30122.8 (3)
C12—C11—C10120.37 (18)O7—O8—O8i119.8 (4)
C12—C11—H11119.8C30—O8—O8i115.6 (3)
C10—C11—H11119.8O7—O8—H849.5
C11—C12—C13119.90 (18)C30—O8—H8102.6
C11—C12—H12120.0O8i—O8—H8106.1
C13—C12—H12120.0O8—C30—H30A108.4
C8—C13—C12119.01 (18)O8—C30—H30B110.4
C8—C13—C14122.23 (17)H30A—C30—H30B109.5
C12—C13—C14118.75 (18)O8—C30—H30C109.6
O2—C14—N1123.2 (2)H30A—C30—H30C109.5
O2—C14—C13123.0 (2)H30B—C30—H30C109.5
N1—C14—C13113.85 (17)O8—O7—H851.3
C20—C15—C16121.33 (19)C14—N1—C1119.97 (16)
C20—C15—S1119.85 (16)C14—N1—S1122.16 (14)
C16—C15—S1118.81 (17)C1—N1—S1116.64 (13)
C17—C16—C15118.7 (2)C7—N2—C8120.46 (16)
C17—C16—H16120.6C7—N2—S2120.92 (13)
C15—C16—H16120.6C8—N2—S2116.82 (13)
C16—C17—C18121.2 (2)O3—S1—O4120.61 (10)
C16—C17—H17119.4O3—S1—N1106.68 (9)
C18—C17—H17119.4O4—S1—N1104.34 (9)
C17—C18—C19118.8 (2)O3—S1—C15110.00 (10)
C17—C18—C21120.8 (2)O4—S1—C15108.42 (10)
C19—C18—C21120.4 (2)N1—S1—C15105.68 (9)
C20—C19—C18121.2 (2)O5—S2—O6119.90 (10)
C20—C19—H19119.4O5—S2—N2103.20 (8)
C18—C19—H19119.4O6—S2—N2109.03 (9)
C15—C20—C19118.7 (2)O5—S2—C22109.77 (10)
C15—C20—H20120.7O6—S2—C22109.15 (10)
C19—C20—H20120.7N2—S2—C22104.62 (9)
C18—C21—H21A109.5
C6—C1—C2—C30.1 (3)C24—C25—C26—C271.2 (4)
N1—C1—C2—C3179.86 (19)C28—C25—C26—C27178.4 (2)
C1—C2—C3—C41.2 (4)C25—C26—C27—C220.4 (3)
C2—C3—C4—C50.7 (4)C23—C22—C27—C260.5 (3)
C3—C4—C5—C60.8 (4)S2—C22—C27—C26177.60 (17)
C4—C5—C6—C11.8 (3)O2—C14—N1—C1158.1 (2)
C4—C5—C6—C7177.1 (2)C13—C14—N1—C120.7 (3)
C2—C1—C6—C51.4 (3)O2—C14—N1—S18.8 (3)
N1—C1—C6—C5178.39 (18)C13—C14—N1—S1172.40 (14)
C2—C1—C6—C7177.50 (18)C2—C1—N1—C1492.5 (2)
N1—C1—C6—C72.7 (3)C6—C1—N1—C1487.8 (2)
C5—C6—C7—O157.8 (3)C2—C1—N1—S175.2 (2)
C1—C6—C7—O1123.3 (2)C6—C1—N1—S1104.62 (18)
C5—C6—C7—N2123.7 (2)O1—C7—N2—C8160.90 (18)
C1—C6—C7—N255.2 (2)C6—C7—N2—C820.6 (2)
C13—C8—C9—C101.5 (3)O1—C7—N2—S23.3 (3)
N2—C8—C9—C10179.16 (17)C6—C7—N2—S2175.14 (13)
C8—C9—C10—C111.6 (3)C9—C8—N2—C793.3 (2)
C9—C10—C11—C120.5 (3)C13—C8—N2—C787.3 (2)
C10—C11—C12—C130.7 (3)C9—C8—N2—S271.5 (2)
C9—C8—C13—C120.3 (3)C13—C8—N2—S2107.86 (18)
N2—C8—C13—C12179.68 (18)C14—N1—S1—O334.98 (18)
C9—C8—C13—C14179.19 (19)C1—N1—S1—O3157.71 (14)
N2—C8—C13—C141.5 (3)C14—N1—S1—O4163.68 (16)
C11—C12—C13—C80.8 (3)C1—N1—S1—O429.01 (16)
C11—C12—C13—C14178.13 (19)C14—N1—S1—C1582.08 (18)
C8—C13—C14—O2125.5 (2)C1—N1—S1—C1585.23 (15)
C12—C13—C14—O255.7 (3)C20—C15—S1—O3137.50 (17)
C8—C13—C14—N155.7 (3)C16—C15—S1—O341.45 (19)
C12—C13—C14—N1123.1 (2)C20—C15—S1—O43.7 (2)
C20—C15—C16—C170.2 (3)C16—C15—S1—O4175.27 (16)
S1—C15—C16—C17178.73 (17)C20—C15—S1—N1107.71 (18)
C15—C16—C17—C180.5 (3)C16—C15—S1—N173.34 (18)
C16—C17—C18—C190.6 (3)C7—N2—S2—O5175.75 (15)
C16—C17—C18—C21179.7 (2)C8—N2—S2—O519.48 (16)
C17—C18—C19—C200.1 (3)C7—N2—S2—O655.75 (17)
C21—C18—C19—C20179.2 (2)C8—N2—S2—O6109.02 (15)
C16—C15—C20—C190.7 (3)C7—N2—S2—C2260.89 (17)
S1—C15—C20—C19178.24 (17)C8—N2—S2—C22134.34 (15)
C18—C19—C20—C150.5 (3)C23—C22—S2—O531.5 (2)
C27—C22—C23—C240.5 (4)C27—C22—S2—O5145.58 (17)
S2—C22—C23—C24177.5 (2)C23—C22—S2—O6164.81 (18)
C22—C23—C24—C250.4 (4)C27—C22—S2—O612.3 (2)
C23—C24—C25—C261.3 (4)C23—C22—S2—N278.6 (2)
C23—C24—C25—C28178.3 (3)C27—C22—S2—N2104.27 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O30.952.663.460 (3)142
C30—H30C···O3i0.962.713.473 (5)136
C16—H16···O20.932.493.190 (3)132
C11—H11···O4ii0.932.543.241 (2)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O30.952.663.460 (3)141.9
C30—H30C···O3i0.962.713.473 (5)136.4
C16—H16···O20.932.493.190 (3)131.7
C11—H11···O4ii0.932.543.241 (2)132.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Acknowledgements top

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

references
References top

Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.

Bouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Brzozowski, Z., S1awiński, J., Saczewski, F., Innocenti, A., Supuran, C.T. (2010). Eur. J. Med. Chem. 45, 2396–2404.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Drew, J. (2000). Science, 287, 1960–964.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Garaj, V., Puccetti, L., Fasolis, G., Winum, J. Y., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3102–3108.

Lopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913–2926.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.