organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o537-o538

2-Amino-5-bromo­pyridinium 5-chloro-2-hy­dr­oxy­benzoate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 27 February 2013; accepted 8 March 2013; online 16 March 2013)

In the 5-chloro­salicylate anion of the title salt, C5H6BrN2+·C7H4ClO3, an intra­molecular O—H⋯O hydrogen bond with an S(6) graph-set motif is formed, so that the anion is essentially planar with a dihedral angle of 1.3 (5)° between the benzene ring and the carboxyl­ate group. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The crystal structure also features N—H⋯O and weak C—H⋯O inter­actions, resulting in a layer parallel to the (10-1) plane.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Goubitz et al. (2001[Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176-181.]); Quah et al. (2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2164-o2165.]); Thanigaimani et al. (2013[Thanigaimani, K., Farhadikoutenaei, A., Arshad, S. & Razak, I. A. (2013). Acta Cryst. E69, o132-o133.]); Raza et al. (2010[Raza, A. R., Nisar, B., Tahir, M. N. & Raza, A. (2010). Acta Cryst. E66, o2921.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C7H4ClO3

  • Mr = 345.58

  • Monoclinic, P 21

  • a = 8.9769 (17) Å

  • b = 5.6601 (12) Å

  • c = 12.753 (2) Å

  • β = 90.662 (5)°

  • V = 647.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 100 K

  • 0.31 × 0.04 × 0.03 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.417, Tmax = 0.894

  • 8030 measured reflections

  • 4233 independent reflections

  • 3014 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.091

  • S = 0.91

  • 4233 reflections

  • 188 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.98 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1558 Friedel pairs

  • Flack parameter: 0.037 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2 0.77 (8) 2.02 (5) 2.553 (4) 127 (6)
N1—H1N1⋯O2i 0.86 (5) 1.82 (5) 2.666 (4) 172 (4)
N2—H1N2⋯O1i 0.96 (6) 1.81 (6) 2.770 (5) 175 (4)
N2—H2N2⋯O1ii 0.88 (5) 1.95 (5) 2.799 (5) 164 (3)
C8—H8A⋯O3iii 0.95 2.53 3.410 (5) 154
Symmetry codes: (i) [-x+2, y-{\script{3\over 2}}, -z+1]; (ii) x, y-1, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions. Related crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001), 2-amino-5-bromopyridinium 2-hydroxybenzoate (Quah et al., 2010) and 2-amino-5-methylpyridinium 2-hydroxy-5-chlorobenzoate (Thanigaimani et al., 2013) have been reported. In order to study potential hydrogen-bonding interactions, the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-bromopyridinium cation and one 5-chlorosalicylate anion. An intramolecular O3–H1O3···O2 hydrogen bond in the 5-chlorosalicylate anion generates an S(6) ring motif (Bernstein et al., 1995). This motif is also observed in the crystal structures of 5-chloro-2-hydroxybenzoic acid (Raza et al., 2010). In the 2-amino-5-bromopyridinium cation, a wide angle [122.5 (4)°] is subtended at the protonated N1 atom. The 2-amino-5-bromopyridinium cation and 5-chlorosalicylate anion are essentially planar, with a maximum deviation of 0.008 (4) Å for atom N2 and 0.026 (4) Å for atom O1, respectively. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2i and N2—H1N2···O1i hydrogen bonds (symmetry code in Table 1), forming a ring motif R22(8) (Bernstein et al., 1995). The crystal structure is further stabilized by N2—H2N2···O1ii and C8—H8A···O3iii (symmetry codes in Table 1) intermolecular interactions. These interactions have resulted in a molecular layer parallel to the (101) plane. This crystal structure is isomorphous to the crystal structure of 2-amino-5-methylpyridinium 2-hydroxy-5-chlorobenzoate (Thanigaimani et al., 2013).

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Quah et al. (2010); Thanigaimani et al. (2013); Raza et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and 5-chlorosalicylic acid (43 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map and allowed to be refined freely [O—H = 0.77 (8) Å and N—H = 0.86 (5)–0.96 (6) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). Eight outliers were omitted (-4 -3 1, -1 -2 2, 1 0 5, 3 2 7, -1 -2 3, -1 0 5, 2 4 0, 2 -4 0) in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-5-bromopyridinium 5-chloro-2-hydroxybenzoate top
Crystal data top
C5H6BrN2+·C7H4ClO3F(000) = 344
Mr = 345.58Dx = 1.771 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1541 reflections
a = 8.9769 (17) Åθ = 3.9–25.8°
b = 5.6601 (12) ŵ = 3.38 mm1
c = 12.753 (2) ÅT = 100 K
β = 90.662 (5)°Needle, colourless
V = 647.9 (2) Å30.31 × 0.04 × 0.03 mm
Z = 2
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4233 independent reflections
Radiation source: fine-focus sealed tube3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.417, Tmax = 0.894k = 78
8030 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4233 reflectionsΔρmax = 0.84 e Å3
188 parametersΔρmin = 0.98 e Å3
1 restraintAbsolute structure: Flack (1983), 1558 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.037 (11)
Crystal data top
C5H6BrN2+·C7H4ClO3V = 647.9 (2) Å3
Mr = 345.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9769 (17) ŵ = 3.38 mm1
b = 5.6601 (12) ÅT = 100 K
c = 12.753 (2) Å0.31 × 0.04 × 0.03 mm
β = 90.662 (5)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3014 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.894Rint = 0.087
8030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.84 e Å3
S = 0.91Δρmin = 0.98 e Å3
4233 reflectionsAbsolute structure: Flack (1983), 1558 Friedel pairs
188 parametersAbsolute structure parameter: 0.037 (11)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.79689 (4)0.54521 (9)0.42592 (3)0.02463 (10)
Cl10.50091 (11)0.29983 (19)0.90762 (8)0.0253 (2)
O10.8634 (3)1.0293 (8)0.87224 (17)0.0248 (6)
O20.8465 (3)1.1615 (5)0.7080 (2)0.0205 (6)
O30.6812 (3)0.9496 (7)0.5736 (2)0.0239 (7)
N10.9596 (4)0.0044 (6)0.2466 (2)0.0190 (8)
N20.9338 (4)0.1193 (7)0.0762 (3)0.0209 (8)
C10.8982 (4)0.0324 (11)0.1506 (2)0.0177 (7)
C20.8005 (4)0.2245 (7)0.1337 (3)0.0196 (8)
H2A0.75610.24950.06660.024*
C30.7703 (4)0.3746 (7)0.2152 (3)0.0196 (8)
H3A0.70390.50340.20500.024*
C40.8375 (4)0.3379 (7)0.3134 (3)0.0188 (8)
C50.9301 (4)0.1523 (7)0.3275 (3)0.0207 (8)
H5A0.97480.12520.39430.025*
C60.7012 (4)0.8297 (7)0.7544 (3)0.0162 (7)
C70.6406 (4)0.8057 (8)0.6536 (3)0.0177 (7)
C80.5392 (4)0.6258 (7)0.6314 (3)0.0223 (9)
H8A0.49860.61100.56260.027*
C90.4971 (4)0.4687 (7)0.7085 (3)0.0210 (8)
H9A0.42900.34470.69320.025*
C100.5563 (4)0.4956 (7)0.8089 (3)0.0187 (9)
C110.6566 (4)0.6721 (7)0.8323 (3)0.0169 (8)
H11A0.69570.68680.90160.020*
C120.8105 (4)1.0173 (9)0.7811 (3)0.0188 (8)
H1O30.721 (5)1.068 (16)0.582 (4)0.025 (16)*
H1N11.027 (5)0.101 (9)0.256 (4)0.023 (12)*
H1N21.000 (6)0.248 (12)0.092 (4)0.039 (15)*
H2N20.898 (4)0.093 (8)0.013 (4)0.021 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02863 (18)0.02674 (19)0.01847 (16)0.0061 (3)0.00223 (12)0.0056 (2)
Cl10.0287 (5)0.0241 (5)0.0232 (5)0.0076 (4)0.0007 (4)0.0025 (4)
O10.0301 (12)0.0291 (17)0.0151 (11)0.0079 (18)0.0073 (9)0.0053 (16)
O20.0256 (14)0.0202 (14)0.0158 (13)0.0045 (12)0.0028 (11)0.0015 (11)
O30.0306 (18)0.0268 (18)0.0141 (14)0.0079 (15)0.0061 (12)0.0035 (12)
N10.0225 (15)0.020 (2)0.0148 (13)0.0051 (15)0.0014 (11)0.0013 (13)
N20.0232 (18)0.027 (2)0.0128 (16)0.0059 (15)0.0048 (13)0.0038 (14)
C10.0196 (15)0.0188 (19)0.0147 (14)0.001 (2)0.0000 (11)0.005 (2)
C20.023 (2)0.021 (2)0.0151 (17)0.0002 (16)0.0060 (15)0.0048 (15)
C30.0193 (19)0.019 (2)0.0204 (19)0.0038 (16)0.0021 (15)0.0031 (15)
C40.0206 (19)0.022 (2)0.0136 (17)0.0026 (16)0.0004 (14)0.0021 (15)
C50.027 (2)0.022 (2)0.0129 (17)0.0013 (17)0.0025 (15)0.0010 (15)
C60.0192 (18)0.0173 (19)0.0119 (16)0.0013 (15)0.0006 (13)0.0022 (14)
C70.0157 (17)0.021 (2)0.0158 (17)0.0011 (16)0.0032 (13)0.0027 (16)
C80.0209 (18)0.027 (2)0.0188 (18)0.0023 (16)0.0037 (15)0.0038 (15)
C90.0183 (18)0.023 (2)0.0218 (19)0.0046 (15)0.0005 (15)0.0051 (15)
C100.0198 (17)0.016 (3)0.0199 (17)0.0029 (14)0.0022 (14)0.0014 (14)
C110.0192 (18)0.018 (2)0.0130 (16)0.0001 (15)0.0019 (14)0.0011 (14)
C120.0198 (16)0.019 (2)0.0171 (15)0.0002 (17)0.0022 (12)0.0006 (17)
Geometric parameters (Å, º) top
Br1—C41.893 (4)C3—C41.399 (5)
Cl1—C101.754 (4)C3—H3A0.9500
O1—C121.252 (4)C4—C51.350 (5)
O2—C121.284 (5)C5—H5A0.9500
O3—C71.359 (5)C6—C71.396 (5)
O3—H1O30.77 (8)C6—C111.398 (5)
N1—C11.346 (4)C6—C121.483 (6)
N1—C51.357 (5)C7—C81.393 (5)
N1—H1N10.86 (5)C8—C91.382 (6)
N2—C11.321 (6)C8—H8A0.9500
N2—H1N20.96 (6)C9—C101.389 (5)
N2—H2N20.88 (5)C9—H9A0.9500
C1—C21.412 (6)C10—C111.375 (5)
C2—C31.372 (6)C11—H11A0.9500
C2—H2A0.9500
C7—O3—H1O3123 (4)C7—C6—C11118.7 (4)
C1—N1—C5122.5 (4)C7—C6—C12122.1 (3)
C1—N1—H1N1119 (3)C11—C6—C12119.2 (3)
C5—N1—H1N1118 (3)O3—C7—C8117.7 (3)
C1—N2—H1N2120 (3)O3—C7—C6121.9 (4)
C1—N2—H2N2117 (3)C8—C7—C6120.3 (4)
H1N2—N2—H2N2122 (4)C9—C8—C7120.6 (4)
N2—C1—N1118.4 (4)C9—C8—H8A119.7
N2—C1—C2123.1 (3)C7—C8—H8A119.7
N1—C1—C2118.5 (4)C8—C9—C10118.7 (4)
C3—C2—C1119.3 (4)C8—C9—H9A120.6
C3—C2—H2A120.4C10—C9—H9A120.6
C1—C2—H2A120.4C11—C10—C9121.5 (4)
C2—C3—C4120.0 (4)C11—C10—Cl1119.6 (3)
C2—C3—H3A120.0C9—C10—Cl1118.9 (3)
C4—C3—H3A120.0C10—C11—C6120.1 (3)
C5—C4—C3119.6 (4)C10—C11—H11A120.0
C5—C4—Br1120.3 (3)C6—C11—H11A120.0
C3—C4—Br1120.1 (3)O1—C12—O2122.9 (4)
C4—C5—N1120.2 (4)O1—C12—C6119.7 (4)
C4—C5—H5A119.9O2—C12—C6117.4 (3)
N1—C5—H5A119.9
C5—N1—C1—N2179.6 (4)O3—C7—C8—C9177.9 (4)
C5—N1—C1—C20.6 (6)C6—C7—C8—C90.0 (6)
N2—C1—C2—C3179.6 (4)C7—C8—C9—C100.9 (6)
N1—C1—C2—C30.5 (6)C8—C9—C10—C110.9 (6)
C1—C2—C3—C40.7 (6)C8—C9—C10—Cl1178.9 (3)
C2—C3—C4—C51.0 (6)C9—C10—C11—C60.1 (5)
C2—C3—C4—Br1179.8 (3)Cl1—C10—C11—C6179.7 (3)
C3—C4—C5—N11.0 (6)C7—C6—C11—C100.8 (5)
Br1—C4—C5—N1179.7 (3)C12—C6—C11—C10179.4 (3)
C1—N1—C5—C40.8 (6)C7—C6—C12—O1178.9 (4)
C11—C6—C7—O3178.6 (3)C11—C6—C12—O11.3 (6)
C12—C6—C7—O31.6 (6)C7—C6—C12—O21.1 (5)
C11—C6—C7—C80.8 (6)C11—C6—C12—O2178.7 (3)
C12—C6—C7—C8179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.77 (8)2.02 (5)2.553 (4)127 (6)
N1—H1N1···O2i0.86 (5)1.82 (5)2.666 (4)172 (4)
N2—H1N2···O1i0.96 (6)1.81 (6)2.770 (5)175 (4)
N2—H2N2···O1ii0.88 (5)1.95 (5)2.799 (5)164 (3)
C8—H8A···O3iii0.952.533.410 (5)154
Symmetry codes: (i) x+2, y3/2, z+1; (ii) x, y1, z1; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C7H4ClO3
Mr345.58
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.9769 (17), 5.6601 (12), 12.753 (2)
β (°) 90.662 (5)
V3)647.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.31 × 0.04 × 0.03
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.417, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
8030, 4233, 3014
Rint0.087
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.091, 0.91
No. of reflections4233
No. of parameters188
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.98
Absolute structureFlack (1983), 1558 Friedel pairs
Absolute structure parameter0.037 (11)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.77 (8)2.02 (5)2.553 (4)127 (6)
N1—H1N1···O2i0.86 (5)1.82 (5)2.666 (4)172 (4)
N2—H1N2···O1i0.96 (6)1.81 (6)2.770 (5)175 (4)
N2—H2N2···O1ii0.88 (5)1.95 (5)2.799 (5)164 (3)
C8—H8A···O3iii0.952.533.410 (5)154
Symmetry codes: (i) x+2, y3/2, z+1; (ii) x, y1, z1; (iii) x+1, y1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for research facilities and a USM Short Term Grant (No. 304/PFIZIK/6312078) to conduct this work. KT thanks the Academy of Sciences for the Developing World and USM for a TWAS-USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGoubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181.  Web of Science CSD CrossRef CAS
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2164–o2165.  Web of Science CSD CrossRef IUCr Journals
First citationRaza, A. R., Nisar, B., Tahir, M. N. & Raza, A. (2010). Acta Cryst. E66, o2921.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationThanigaimani, K., Farhadikoutenaei, A., Arshad, S. & Razak, I. A. (2013). Acta Cryst. E69, o132–o133.  CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o537-o538
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds