organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-7-nitro­cyclo­hepta-2,4,6-trien-1-one

aInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
*Correspondence e-mail: k.lyczko@ichtj.waw.pl

(Received 4 February 2013; accepted 7 March 2013; online 16 March 2013)

The title compound, also known as 7-nitro­tropolone, C7H5NO4, exists in the crystalline state as the 2-hy­droxy-7-nitro­cyclo­hepta-2,4,6-trien-1-one tautomer and not as 2-hy­droxy-3-nitro­cyclo­hepta-2,4,6-trien-1-one. The dihedral angle between the ring and the nitro group is 70.3 (2)°. In the crystal, neighbouring mol­ecules are linked into dimers by a pair of O—H⋯O hydrogen bonds. In addition, the crystal is stabilized by O⋯π [3.4039 (14) Å] and O⋯O [3.073 (2) Å] inter­actions.

Related literature

For the structure of tropolone and 5-nitro­tropolone, see: Shimanouchi & Sasada (1973[Shimanouchi, H. & Sasada, Y. (1973). Acta Cryst. B29, 81-90.]); Kubo et al. (2001[Kubo, K., Yamamoto, E. & Mori, A. (2001). Acta Cryst. C57, 611-613.]), respectively. Structural data on other mono-substituted tropolones were reported by Derry & Hamor (1972[Derry, J. E. & Hamor, T. A. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 694-697.]); Berg et al. (1976[Berg, J.-E., Karlsson, B., Pilotti, A.-M. & Wiehager, A.-C. (1976). Acta Cryst. B32, 3121-3123.]); Tsuji et al. (1991[Tsuji, T., Sekiya, H., Nishimura, Y., Mori, A., Takeshita, H. & Nishiyama, N. (1991). Acta Cryst. C47, 2428-2430.]); Kubo et al. (2001[Kubo, K., Yamamoto, E. & Mori, A. (2001). Acta Cryst. C57, 611-613.], 2006a[Kubo, K., Yamamoto, E. & Mori, A. (2006a). Acta Cryst. E62, o2988-o2990.],b[Kubo, K., Yamamoto, E. & Mori, A. (2006b). Acta Cryst. E62, o4325-o4326.], 2007a[Kubo, K., Matsumoto, T. & Mori, A. (2007a). Acta Cryst. E63, o941-o943.],b[Kubo, K., Matsumoto, T. & Mori, A. (2007b). Acta Cryst. E63, o1063-o1064.],c[Kubo, K., Matsumoto, T. & Mori, A. (2007c). Acta Cryst. E63, o1297-o1299.],d[Kubo, K., Matsumoto, T., Kuribayashi, D. & Mori, A. (2007d). Acta Cryst. E63, o1570-o1572.]). For the synthesis of nitro­tropolone, see Cook et al. (1954[Cook, J. W., Loudon, J. D. & Steel, D. K. V. (1954). J. Chem. Soc. pp. 530-535.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4

  • Mr = 167.12

  • Monoclinic, P 21 /c

  • a = 9.6167 (2) Å

  • b = 6.4772 (1) Å

  • c = 11.7326 (4) Å

  • β = 96.162 (2)°

  • V = 726.59 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.11 mm−1

  • T = 295 K

  • 0.45 × 0.35 × 0.15 mm

Data collection
  • Agilent SuperNova (Dual, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.541, Tmax = 1.000

  • 8694 measured reflections

  • 1364 independent reflections

  • 1314 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.07

  • 1364 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 (3) 2.05 (3) 2.5796 (14) 120 (2)
O2—H2⋯O1i 0.84 (3) 2.04 (3) 2.7349 (15) 139 (3)
Symmetry code: (i) -x, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The aim of the present work was to determine the structure of the second isomer of nitrotropolone which is formed besides 5-nitrotropolone in the nitration reaction described by Cook et al. (1954). The second purpose was to find out which of the possible tautomers, 2-hydroxy-7-nitrocyclohepta- 2,4,6-trien-1-one or 2-hydroxy-3-nitrocyclohepta-2,4,6-trien-1-one is present in the solid state. It appeared that three different compounds were obtained during the nitration process with 7-nitrotropolone (Fig. 1) and 5-nitrotropolone as the main products and 7-hydroxytropolone as the side product.

In the title compound the C2—O2 bond (1.3324 (17) Å) is longer than the C1—O1 bond (1.2403 (16) Å). In combination with the features of the difference Fourier map this allows the unambiguous location of the hydroxyl H atom as bonded to the O2 atom. According to the rule which assigns position 1 in the tropolone ring to the carbon atom of the carbonyl group and position 2 to the carbon atom bonded to the hydroxyl group, the crystallized compound is 7-nitrotropolone and not 3-nitrotropolone.

The crystal structures of tropolone (Shimanouchi & Sasada, 1973) and other mono-substituted tropolones, such as 5-nitro-, 5-cyano- (Kubo et al., 2001), 5-methyl- (Kubo et al., 2007b), 5-methoxy- (Kubo et al., 2006b), 5-acetoxy- (Kubo et al., 2006a), 5-iodo- (Kubo et al., 2007d), 7-iodo- (Kubo et al., 2007c), 4-isopropyl- (Derry & Hamor, 1972), 5-isopropyl- (Berg et al., 1976), 7-hydroxy- (Kubo et al., 2007a), 7-chlorotropolone (Tsuji et al., 1991), have been reported previously.

The studied compound forms centrosymmetric O—H···O hydrogen-bonded dimers, similar to those found for 5-nitrotropolone (Kubo et al., 2001), tropolone (Shimanouchi & Sasada, 1973) and the most of its mono-substituted derivatives. Some of the other derivatives of tropolone, e.g. 4-isopropyltropolone (Derry & Hamor, 1972), 5-iodotropolone (Kubo et al., 2007d) and 7-iodotropolone (Kubo et al., 2007c), form hydrogen-bonded zigzag chains. The crystal structure of the title compound contains molecules linked into dimers through intermolecular O—H···O hydrogen-bonds involving the OH groups and the carbonyl O atoms (Table 1, Fig. 2). The hydroxyl group is in fact involved in a bifurcated hydrogen bond that also forms an intramolecular link to the carbonyl acceptor in the same molecule. The intermolecular distance O1···O2 of 2.7349 (15) Å is similar to that found for 5-nitrotropolone (2.743 Å, Kubo et al., 2001) and tropolone (2.746 Å, Shimanouchi & Sasada, 1973). Intermolecular interactions between the hydroxyl group and a seven-membered ring (O—H···π interactions) are also observed; the O2···C(1–7)ii [symmetry code: (ii) -x, 1 - y, -z] distances are in the range 3.585–3.637 Å. Furthermore, interactions between the nitro group and neighbouring rings of tropolone molecules (O···π interactions) are observed in the crystal structure: 3.149 Å for O4···C2iii, 3.321 Å for O4···C3iii, 3.472 Å for O4···C1iii [symmetry code: (iii) x, 1/2 - y, 1/2 + z], 3.430 Å for O4···C4iv [symmetry code: (iv) x, 3/2 - y, 3/2 + z] and 3.499 Å for O3···C6v [symmetry code: (v) 1 - x, -1/2 + y, 1/2 - z]. The closest distance between symmetry related tropolone planes is 3.272 Å for C2···C2ii. However, the intermolecular π···π interactions between neighbouring rings are much less distinct in the crystal structure of 7-nitrotropolone than for 5-nitrotropolone (Kubo et al., 2001). The shortest contact between oxygen atoms from neighbouring NO2 groups is 3.073 Å for O3···O4v. All of the interactions mentioned above have an influence on the formation of crystal structure network (Fig. 2). In 5-nitrotropolone (Kubo et al., 2001) all atoms of the NO2 group lie exactly in (torsion angle C6—C5—N1—O4 0.2 (2)°) or very closely to (torsion angle C13—C12—N1—O7 13.7 (2)°) the plane of the tropolone ring while for the 7-nitrotropolone this group is rotated out of the tropolone plane (torsion angle C1—C7—N1—O3 71.5 (2)°).

Related literature top

For the structure of tropolone and 5-nitrotropolone, see Shimanouchi & Sasada (1973) and Kubo et al. (2001), respectively. Structural data on other mono-substituted tropolones were reported by Derry & Hamor (1972); Berg et al. (1976); Tsuji et al. (1991); Kubo et al. (2001, 2006a,b; 2007a,b,c,d). For the synthesis of nitrotropolone, see Cook et al. (1954).

Experimental top

The title compound and 5-nitrotropolone were synthesized together as the main products in the nitration reaction of tropolone described by Cook et al. (1954). 7-hydroxytropolone was also obtained in this reaction but in a much smaller amount. Single crystals of these compounds were found after recrystallization from benzene. The formation of these products were confirmed by single-crystal X-ray diffraction measurements.

Refinement top

The H atom of the OH group was located in a difference map and its position and Uiso value were freely refined. All H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93 Å and refined isotropically using riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids of the non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A fragment of the crystal structure showing the hydrogen bonds and intermolecular interactions in the 7-nitrotropolone. Dashed lines indicate hydrogen bonds and other intermolecular interactions.
2-Hydroxy-7-nitrocyclohepta-2,4,6-trien-1-one top
Crystal data top
C7H5NO4F(000) = 344
Mr = 167.12Dx = 1.528 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6294 reflections
a = 9.6167 (2) Åθ = 3.8–72.1°
b = 6.4772 (1) ŵ = 1.11 mm1
c = 11.7326 (4) ÅT = 295 K
β = 96.162 (2)°Plate, yellow
V = 726.59 (3) Å30.45 × 0.35 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Eos)
diffractometer
1364 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1314 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 16.0131 pixels mm-1θmax = 70.0°, θmin = 7.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 77
Tmin = 0.541, Tmax = 1.000l = 1413
8694 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.1985P]
where P = (Fo2 + 2Fc2)/3
1364 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H5NO4V = 726.59 (3) Å3
Mr = 167.12Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.6167 (2) ŵ = 1.11 mm1
b = 6.4772 (1) ÅT = 295 K
c = 11.7326 (4) Å0.45 × 0.35 × 0.15 mm
β = 96.162 (2)°
Data collection top
Agilent SuperNova (Dual, Eos)
diffractometer
1364 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1314 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 1.000Rint = 0.022
8694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
1364 reflectionsΔρmin = 0.16 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16992 (13)0.2812 (2)0.03140 (11)0.0391 (3)
C20.10047 (15)0.3639 (2)0.07541 (11)0.0427 (3)
C30.12800 (17)0.5388 (2)0.13382 (13)0.0530 (4)
C40.22824 (19)0.6924 (3)0.10795 (15)0.0600 (4)
C50.32680 (19)0.7082 (3)0.01626 (16)0.0613 (5)
C60.35254 (16)0.5684 (2)0.07413 (14)0.0535 (4)
C70.28716 (13)0.3865 (2)0.09138 (11)0.0416 (3)
H20.011 (3)0.146 (4)0.077 (2)0.101 (9)*
H30.07070.55890.20190.064*
H40.22750.79920.16100.072*
H50.38330.82500.01340.074*
H60.42410.60460.13020.064*
N10.34481 (12)0.2721 (2)0.19480 (11)0.0500 (3)
O10.12366 (11)0.11924 (15)0.06932 (9)0.0534 (3)
O20.00635 (12)0.24914 (19)0.12093 (9)0.0568 (3)
O30.40798 (16)0.1136 (2)0.18063 (12)0.0853 (5)
O40.32868 (16)0.3421 (2)0.28807 (10)0.0751 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (7)0.0356 (7)0.0401 (7)0.0002 (5)0.0038 (5)0.0029 (5)
C20.0472 (7)0.0425 (7)0.0367 (7)0.0006 (6)0.0031 (5)0.0048 (5)
C30.0655 (9)0.0517 (9)0.0404 (7)0.0028 (7)0.0011 (6)0.0057 (6)
C40.0757 (11)0.0452 (9)0.0603 (10)0.0017 (8)0.0125 (8)0.0114 (7)
C50.0628 (10)0.0438 (8)0.0777 (12)0.0129 (7)0.0091 (8)0.0015 (8)
C60.0463 (8)0.0496 (8)0.0626 (9)0.0102 (6)0.0036 (6)0.0074 (7)
C70.0379 (7)0.0418 (7)0.0433 (7)0.0003 (5)0.0041 (5)0.0036 (5)
N10.0433 (7)0.0532 (7)0.0500 (7)0.0057 (5)0.0109 (5)0.0016 (5)
O10.0569 (6)0.0433 (6)0.0551 (6)0.0128 (5)0.0164 (5)0.0074 (4)
O20.0653 (7)0.0564 (7)0.0433 (6)0.0133 (5)0.0188 (5)0.0017 (5)
O30.0887 (10)0.0850 (10)0.0759 (9)0.0384 (8)0.0202 (7)0.0027 (7)
O40.1024 (10)0.0742 (9)0.0475 (7)0.0110 (7)0.0025 (6)0.0021 (6)
Geometric parameters (Å, º) top
C1—C71.4358 (18)C6—H60.9300
C2—C11.4575 (18)C7—C61.361 (2)
C2—C31.364 (2)N1—O31.2135 (19)
C3—H30.9300N1—O41.2098 (17)
C4—C31.396 (2)N1—C71.4779 (18)
C4—C51.359 (3)O1—C11.2403 (16)
C4—H40.9300O2—C21.3324 (17)
C5—H50.9300O2—H20.84 (3)
C6—C51.396 (2)
C1—C7—N1111.71 (12)C6—C7—C1133.59 (14)
C2—O2—H2106.8 (19)C6—C7—N1114.68 (12)
C2—C3—C4130.48 (14)C7—C1—C2120.66 (12)
C2—C3—H3114.8C7—C6—C5128.85 (15)
C3—C2—C1129.91 (13)C7—C6—H6115.6
C3—C4—H4115.4O1—C1—C2118.07 (12)
C4—C3—H3114.8O1—C1—C7121.26 (12)
C4—C5—C6127.17 (15)O2—C2—C1113.69 (12)
C4—C5—H5116.4O2—C2—C3116.41 (13)
C5—C4—C3129.22 (15)O3—N1—C7117.45 (13)
C5—C4—H4115.4O4—N1—C7118.79 (13)
C5—C6—H6115.6O4—N1—O3123.76 (15)
C6—C5—H5116.4
C1—C2—C3—C41.6 (3)O1—C1—C7—C6175.17 (15)
C1—C7—C6—C54.0 (3)O1—C1—C7—N13.12 (19)
C2—C1—C7—C63.9 (2)O2—C2—C1—C7179.96 (12)
C2—C1—C7—N1177.80 (11)O2—C2—C1—O10.93 (19)
C3—C2—C1—C70.5 (2)O2—C2—C3—C4178.01 (16)
C3—C2—C1—O1178.65 (15)O3—N1—C7—C171.52 (17)
C3—C4—C5—C61.4 (3)O3—N1—C7—C6109.84 (17)
C5—C4—C3—C20.2 (3)O4—N1—C7—C1109.60 (15)
C7—C6—C5—C40.4 (3)O4—N1—C7—C669.04 (18)
N1—C7—C6—C5177.76 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (3)2.05 (3)2.5796 (14)120 (2)
O2—H2···O1i0.84 (3)2.04 (3)2.7349 (15)139 (3)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC7H5NO4
Mr167.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.6167 (2), 6.4772 (1), 11.7326 (4)
β (°) 96.162 (2)
V3)726.59 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.11
Crystal size (mm)0.45 × 0.35 × 0.15
Data collection
DiffractometerAgilent SuperNova (Dual, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.541, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8694, 1364, 1314
Rint0.022
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.07
No. of reflections1364
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al. 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.84 (3)2.05 (3)2.5796 (14)120 (2)
O2—H2···O1i0.84 (3)2.04 (3)2.7349 (15)139 (3)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Institute of Nuclear Chemistry and Technology for financial support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBerg, J.-E., Karlsson, B., Pilotti, A.-M. & Wiehager, A.-C. (1976). Acta Cryst. B32, 3121–3123.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCook, J. W., Loudon, J. D. & Steel, D. K. V. (1954). J. Chem. Soc. pp. 530–535.  CrossRef Web of Science Google Scholar
First citationDerry, J. E. & Hamor, T. A. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 694–697.  CSD CrossRef Google Scholar
First citationKubo, K., Matsumoto, T., Kuribayashi, D. & Mori, A. (2007d). Acta Cryst. E63, o1570–o1572.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubo, K., Matsumoto, T. & Mori, A. (2007a). Acta Cryst. E63, o941–o943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubo, K., Matsumoto, T. & Mori, A. (2007b). Acta Cryst. E63, o1063–o1064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubo, K., Matsumoto, T. & Mori, A. (2007c). Acta Cryst. E63, o1297–o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubo, K., Yamamoto, E. & Mori, A. (2001). Acta Cryst. C57, 611–613.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKubo, K., Yamamoto, E. & Mori, A. (2006a). Acta Cryst. E62, o2988–o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubo, K., Yamamoto, E. & Mori, A. (2006b). Acta Cryst. E62, o4325–o4326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimanouchi, H. & Sasada, Y. (1973). Acta Cryst. B29, 81–90.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTsuji, T., Sekiya, H., Nishimura, Y., Mori, A., Takeshita, H. & Nishiyama, N. (1991). Acta Cryst. C47, 2428–2430.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds