supplementary materials


lh5594 scheme

Acta Cryst. (2013). E69, m224-m225    [ doi:10.1107/S1600536813007344 ]

Chlorido[1-(2-oxidophenyl)ethylidene][tris(3,5-dimethylpyrazol-1-yl)hydroborato]iridium(III) chloroform monosolvate

L. L. Santos, M. Paneque and K. Mereiter

Abstract top

In the title compound, [Ir(C15H22BN6)(C8H7O)Cl]·CHCl3, the Ir atom is formally trivalent and is coordinated in a slightly distorted octahedral geometry by three facial N atoms, one C atom, one O atom and one Cl atom. The Ir=Ccarbene bond is strong and short and exerts a notable effect on the trans-Ir-N bond, which is about 0.10 Å longer than the two other Ir-N bonds. The chloroform solvent molecule is anchored via a weak C-H...Cl hydrogen bond to the Cl atom of the Ir complex molecule. In the crystal, the constituents adopt a layer-like arrangement parallel to (010) and are held together by weak intermolecular C-H...Cl hydrogen bonds, as well as weak Cl...Cl [3.498 (2) Å] and Cl...[pi] [3.360 (4) Å] interactions. A weak intramolecular C-H...O hydrogen bond is also observed.

Comment top

Transition metal compounds capable of inducing C—H bond activation and subsequent C—C bond formation have important applications in the synthesis of complex organic molecules from simple, commonly available substrates (Lin & Yamamoto, 1999; Dyker, 1999; Labinger & Bercaw, 2002). Iridium complexes with hydrogen-tris(pyrazolyl)borate as a stabilizing ligand and labile coordination sites have been found to show an outstanding potential at this respect (Conejero et al., 2010). Part of our work in this field has derived from the study of reactions of ethers with reactive Ir complexes coordinated by the hydrogen-tris(3,5-dimethylpyrazolyl)borate ligand (TpMe2) (Lara et al., 2009; Conejero et al., 2010; Santos et al., 2013). When the complex [(TpMe2)Ir(C6H5)2(k1-N2)] (C6H5 = phenyl, N2 = dinitrogen; Gutiérrez-Puebla et al., 1998) and C6H5OCH2CH3 (ethoxybenzene) are heated to 333K in cyclohexane a mixture of three compounds is formed (see reaction scheme Fig. 3). The major reaction product is 2, the precursor of the title complex 1. Compound 2 is a hydride-alkylidene whose formation requires multiple C—H bond activations, C—O bond cleavage and C—C bond formation. The other reaction products are a heteroatom-stabilized hydride-carbene 3 derived from three C—H activations of the organic product, and the minor reaction product 4 (ca 5%), which is the hydride-alkene tautomer of 2. Compound 2 could be prepared independently in nearly quantitative yield (~95%) by the reaction of [(TpMe2)Ir(C6H5)2(k1-N2)] with 2-ethylphenol (Lara et al., 2009). Compound 2 is stable at room temperature but at higher temperatures is in equilibrium with compound 4. On the other hand, if 2 is heated in chloroform at 353K for 4 days, a C—Cl bond activation takes place whereby the hydride is exchanged against a Cl atom under concomitant formation of dichloromethane. The resulting complex 1 (Fig. 3) crystallizes from the excess of CHCl3 under formation of the title compound, an air-stable solvate 1.CHCl3, (I). In 1 the iridium atom exhibits a relatively regular octahedral coordination by three pyrazole nitrogen atoms, the carbene atom C22, the phenolate oxygen O1, and the chloride ligand Cl1 (Fig. 1). The cis bond angles about Ir vary from 82.18 (12)° (C22—Ir1—O1) to 98.38 (13)° (C22—Ir1—N3) and the trans bond angles from 173.11 (8)° to 177.55 (9)° (N3—Ir1—O1). The metal-carbene bond Ir1—C22 = 1.937 (3) Å is characteristically short and in good accord with Ir-carbene bonds of well refined crystal structures in the Cambridge Structural Database (version 5.33; Allen, 2002), which gave a mean value of 1.942 (64) Å for 57 crystal structures with 69 bonds. The Ir—N bonds (Table 1) show a typical elongation of ca 0.1 Å for the bond Ir1—N5 trans to the carbene ligand. The Ir—O and Ir—Cl bonds adopt normal values (Allen et al., 1987). Bond lengths and angles in the TpMe2 ligand compare well with related complexes (e.g.: Lara et al., 2009; Santos et al., 2013). The chelate ring formed by the carbene ligand has a flat envelope conformation with O1—C16—C21—C22 perfectly planar (r.m.s. deviation from planarity 0.0002 Å) and Ir1 displaced from this plane by -0.352 (5) Å whereas the terminal methyl carbon C23 is 0.419 (7) Å off from this plane. The carbene atom C22 has a very flat pyramidal coordination and deviates by -0.064 (4) Å from the plane defined by Ir1, C21, and C23. In the crystal structure the Ir complexes 1 and the CHCl3 molecules are organized in a layer-like fashion parallel to (010) as shown in Fig. 2. Such layers are centered at y 1/4; and y 3/4;. The CHCl3 molecule is anchored in the structure via a pronounced C—H···Cl hydrogen bond (C···Cl = 3.360 (4) Å) to the Cl1 atom of the Ir complex (Fig. 1 and Table 2). It is moreover fixed by the interaction C11—H11c···Cl3 [C11(x,1/2 - y,1/2 + z)···Cl3 = 3.608 (4) Å], by the halogen-halogen contact Cl3···Cl1(x,1/2 - y,1/2 + z) = 3.498 (2) Å, and two side-on contacts between the π-orbitals of arene rings and Cl [Cl2 with pyrazole ring 1 and the shortest contact distance Cl2···C4(x - 1,y,z) = 3.360 (4) Å; Cl3 with the phenyl ring and the shortest contact distance Cl3···C20 = 3.396 (4) Å]. These interactions are included in Fig. 2. Interactions between the Ir complexes are unremarkable and consist essentially of van der Waals contacts. The interaction C11—H11a···O3 is intramolecular.

Related literature top

The title compound represents a well crystallizing air-stable chloroform solvate of a mononuclear iridium complex based on the (hydrogen tris(3,5-dimethylpyrazolyl)borate-N,N',N'')-iridium moiety Ir[TpMe2]. Its formation from [(TpMe2)Ir(C6H5)2 ([(TpMe2)Ir(C6H5)2(k1-N2)] (C6H5 = phenyl, N2 = dinitrogen) and ethoxybenzene involved multiple C—C,H,O,Cl bond transformations by the outstanding activity of the Ir[TpMe2] moiety. For general information on C—H and C—C activation, see: Lin & Yamamoto (1999); Dyker (1999); Labinger & Bercaw (2002). For C—H bond activation reactions of ethers by Ir[TpMe2] complexes, see: Lara et al. (2009); Conejero et al. (2010); Santos et al. (2013). For the synthesis of the complex and related crystal structures, see: Gutiérrez-Puebla et al. (1998); Lara et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 2 (0.030 g, 0.049 mmol; see Fig. 3; for synthesis see Lara et al., 2009) in CHCl3 (3 ml) was stirred at 353K for 4 days. After this time the solvent was removed under reduced pressure. NMR spectra of the crude product revealed the presence of complex 1 in 70% spectroscopic yield. Crystallization from pentane/CH2Cl2/CHCl3 at 253K gave compound 1 as a dark green microcrystalline solid. 1H NMR (CDCl3, 298 K) δ 7.47, 7.28, 7.19, 6.60 (dd, ddd, d, ddd, 1 H each, 3JHH 8.5, 4JHH 1 Hz, 4 CHar), 5.89, 5.88, 5.50 (s, 1 H each, 3 CHpz), 3.07 (s, 3 H, IrCCH3), 2.77, 2.49, 2.40, 2.36, 2.32, 1.32 (s, 3 H each, 6 Mepz). 13C{1H} NMR (CDCl3, 25 °C) δ 273.2(IrC), 192.5 (Ir—O—C), 154.7, 153.8, 153.3, 152.3, 144.6, 144.2, 144.1 (Ir C-C + Cqpz), 141.0, 124.2, 119.7, 115.7 (CHar), 108.4, 108.3, 108.2 (CHpz), 34.0 (Ir=CCH3), 16.4, 14.1, 13.1, 13.0, 12.4, 12.2 (Mepz). Crystals of 1.CHCl3 for X-ray diffraction were obtained by recrystallization from CHCl3/pentane.

Refinement top

H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–1.00 Å, B—H = 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C,B), using AFIX 137 of program SHELXL97 (Sheldrick, 2008) for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure 1.CHCl3 with displacement ellipsoids drawn at the 50% probability level and the hydrogen bond C24—H24···Cl1 as a dashed red line.
[Figure 2] Fig. 2. View of the structure of 1.CHCl3 approximately along [010] in the range 0 < y < 1/2; showing the interactions C—H···O,Cl (red), Cl···Cl (green), and Cl···π (blue) as dashed lines.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of 1.
Chlorido[1-(2-oxidophenyl)ethylidene][tris(3,5-dimethylpyrazol-1-yl)hydroborato]iridium(III) chloroform monosolvate top
Crystal data top
[Ir(C15H22BN6)(C8H7O)Cl]·CHCl3F(000) = 1496
Mr = 763.35Dx = 1.825 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8986 reflections
a = 10.1271 (4) Åθ = 2.3–30.0°
b = 19.1711 (8) ŵ = 5.22 mm1
c = 14.3154 (6) ÅT = 173 K
β = 91.956 (2)°Irregular, dark green
V = 2777.7 (2) Å30.32 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
8053 independent reflections
Radiation source: fine-focus sealed tube6999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.343, Tmax = 0.593k = 2626
52411 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.038P)2 + 4.5744P]
where P = (Fo2 + 2Fc2)/3
8053 reflections(Δ/σ)max = 0.001
341 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 1.43 e Å3
Crystal data top
[Ir(C15H22BN6)(C8H7O)Cl]·CHCl3V = 2777.7 (2) Å3
Mr = 763.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1271 (4) ŵ = 5.22 mm1
b = 19.1711 (8) ÅT = 173 K
c = 14.3154 (6) Å0.32 × 0.15 × 0.10 mm
β = 91.956 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6999 reflections with I > 2σ(I)
Tmin = 0.343, Tmax = 0.593Rint = 0.037
52411 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071Δρmax = 1.29 e Å3
S = 1.02Δρmin = 1.43 e Å3
8053 reflectionsAbsolute structure: ?
341 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.436291 (10)0.157920 (6)0.682819 (7)0.01911 (4)
Cl10.23334 (8)0.20336 (4)0.62640 (6)0.02847 (15)
B10.6944 (4)0.16488 (19)0.5669 (3)0.0262 (7)
H0B0.77820.16800.53220.031*
N10.6159 (3)0.11309 (14)0.71808 (18)0.0227 (5)
N20.7168 (3)0.12094 (14)0.65687 (19)0.0247 (5)
N30.5334 (3)0.24641 (14)0.64204 (18)0.0234 (5)
N40.6481 (3)0.23785 (15)0.59388 (19)0.0257 (5)
N50.4663 (3)0.11764 (14)0.54460 (18)0.0225 (5)
N60.5867 (3)0.12870 (14)0.50605 (18)0.0236 (5)
O10.3316 (2)0.07061 (11)0.72065 (14)0.0216 (4)
C10.5825 (4)0.0473 (2)0.8677 (3)0.0357 (8)
H1A0.55290.08840.90180.054*
H1B0.63780.01810.90950.054*
H1C0.50550.02050.84510.054*
C20.6607 (3)0.06994 (17)0.7866 (2)0.0267 (6)
C30.7896 (3)0.05026 (19)0.7680 (3)0.0323 (7)
H30.84480.02010.80480.039*
C40.8217 (3)0.08277 (18)0.6863 (2)0.0281 (7)
C50.9489 (3)0.0795 (2)0.6354 (3)0.0380 (8)
H5A0.92950.07400.56830.057*
H5B1.00140.03970.65830.057*
H5C0.99890.12270.64640.057*
C60.3925 (4)0.34615 (18)0.6934 (3)0.0340 (7)
H6A0.34250.30950.72410.051*
H6B0.33590.36890.64560.051*
H6C0.42240.38070.73990.051*
C70.5096 (4)0.31472 (17)0.6486 (2)0.0277 (6)
C80.6101 (4)0.35093 (18)0.6050 (3)0.0337 (8)
H80.61780.40010.59920.040*
C90.6957 (4)0.30165 (18)0.5719 (2)0.0308 (7)
C100.8185 (4)0.3117 (2)0.5176 (3)0.0454 (10)
H10A0.80530.29170.45500.068*
H10B0.89290.28840.55010.068*
H10C0.83740.36170.51240.068*
C110.2581 (3)0.05407 (19)0.5004 (3)0.0308 (7)
H11A0.24750.04630.56740.046*
H11B0.24150.01040.46640.046*
H11C0.19520.08970.47810.046*
C120.3956 (3)0.07824 (16)0.4843 (2)0.0232 (6)
C130.4714 (4)0.06377 (17)0.4063 (2)0.0280 (6)
H130.44550.03690.35300.034*
C140.5906 (3)0.09640 (17)0.4225 (2)0.0263 (6)
C150.7068 (4)0.1003 (2)0.3615 (3)0.0387 (9)
H15A0.70340.06150.31690.058*
H15B0.78840.09730.40010.058*
H15C0.70490.14460.32740.058*
C160.2741 (3)0.08151 (19)0.7994 (2)0.0280 (6)
C170.1875 (4)0.0306 (2)0.8350 (3)0.0377 (8)
H170.16540.01000.79990.045*
C180.1364 (4)0.0413 (3)0.9210 (3)0.0500 (11)
H180.07670.00770.94430.060*
C190.1686 (4)0.1001 (3)0.9767 (3)0.0493 (11)
H190.13240.10541.03660.059*
C200.2535 (4)0.1500 (2)0.9430 (3)0.0384 (8)
H200.27620.18960.97990.046*
C210.3070 (3)0.14175 (19)0.8528 (2)0.0282 (7)
C220.4044 (3)0.18475 (18)0.8105 (2)0.0263 (6)
C230.4790 (4)0.2367 (2)0.8696 (3)0.0356 (8)
H23A0.41920.27410.88770.053*
H23B0.55100.25630.83400.053*
H23C0.51560.21360.92580.053*
C240.0420 (5)0.2910 (2)0.7869 (4)0.0508 (11)
H240.11710.26660.75730.061*
Cl20.10099 (13)0.24331 (7)0.76482 (9)0.0592 (3)
Cl30.07774 (17)0.29868 (9)0.90450 (11)0.0756 (4)
Cl40.02838 (17)0.37582 (8)0.73962 (13)0.0804 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01915 (6)0.01930 (6)0.01887 (6)0.00133 (4)0.00052 (4)0.00196 (4)
Cl10.0237 (3)0.0308 (4)0.0307 (4)0.0028 (3)0.0012 (3)0.0030 (3)
B10.0226 (16)0.0281 (18)0.0280 (17)0.0040 (13)0.0031 (13)0.0005 (14)
N10.0205 (12)0.0230 (12)0.0247 (12)0.0017 (10)0.0005 (9)0.0001 (10)
N20.0187 (12)0.0266 (13)0.0285 (13)0.0012 (10)0.0002 (10)0.0004 (10)
N30.0240 (12)0.0219 (12)0.0245 (12)0.0032 (10)0.0014 (10)0.0012 (10)
N40.0244 (13)0.0256 (13)0.0273 (13)0.0041 (10)0.0022 (10)0.0008 (10)
N50.0227 (12)0.0223 (12)0.0225 (12)0.0025 (10)0.0020 (9)0.0005 (10)
N60.0229 (12)0.0247 (13)0.0234 (12)0.0006 (10)0.0048 (10)0.0001 (10)
O10.0229 (10)0.0216 (10)0.0207 (10)0.0041 (8)0.0053 (8)0.0022 (8)
C10.0391 (19)0.0357 (19)0.0325 (18)0.0050 (15)0.0022 (14)0.0104 (15)
C20.0289 (16)0.0243 (15)0.0264 (15)0.0011 (12)0.0046 (12)0.0003 (12)
C30.0267 (16)0.0341 (18)0.0355 (18)0.0043 (13)0.0072 (13)0.0021 (14)
C40.0199 (14)0.0273 (16)0.0370 (17)0.0013 (12)0.0032 (12)0.0029 (13)
C50.0191 (15)0.046 (2)0.049 (2)0.0000 (14)0.0007 (14)0.0016 (17)
C60.046 (2)0.0254 (17)0.0305 (17)0.0046 (14)0.0010 (15)0.0034 (13)
C70.0384 (18)0.0210 (14)0.0234 (15)0.0032 (13)0.0034 (12)0.0021 (12)
C80.048 (2)0.0218 (16)0.0310 (17)0.0099 (14)0.0032 (15)0.0013 (13)
C90.0359 (18)0.0272 (16)0.0291 (16)0.0121 (14)0.0015 (13)0.0022 (13)
C100.044 (2)0.042 (2)0.051 (2)0.0161 (18)0.0114 (19)0.0053 (19)
C110.0297 (16)0.0307 (17)0.0316 (17)0.0065 (13)0.0040 (13)0.0030 (13)
C120.0288 (15)0.0188 (13)0.0217 (14)0.0005 (11)0.0032 (11)0.0002 (11)
C130.0404 (18)0.0228 (15)0.0208 (14)0.0020 (13)0.0007 (12)0.0010 (11)
C140.0353 (17)0.0212 (14)0.0226 (14)0.0042 (12)0.0051 (12)0.0015 (11)
C150.050 (2)0.037 (2)0.0302 (17)0.0049 (17)0.0179 (16)0.0016 (15)
C160.0252 (15)0.0328 (17)0.0261 (15)0.0011 (13)0.0027 (12)0.0016 (13)
C170.0366 (19)0.042 (2)0.0348 (19)0.0111 (16)0.0075 (15)0.0016 (16)
C180.042 (2)0.069 (3)0.041 (2)0.014 (2)0.0164 (18)0.005 (2)
C190.042 (2)0.065 (3)0.042 (2)0.001 (2)0.0193 (18)0.004 (2)
C200.039 (2)0.049 (2)0.0279 (17)0.0034 (17)0.0046 (14)0.0053 (16)
C210.0296 (16)0.0322 (17)0.0227 (15)0.0043 (13)0.0003 (12)0.0021 (12)
C220.0260 (15)0.0267 (15)0.0261 (15)0.0035 (12)0.0019 (12)0.0018 (12)
C230.047 (2)0.0311 (18)0.0280 (17)0.0063 (15)0.0033 (15)0.0064 (14)
C240.044 (2)0.038 (2)0.070 (3)0.0005 (18)0.014 (2)0.014 (2)
Cl20.0559 (7)0.0624 (7)0.0594 (7)0.0145 (6)0.0056 (5)0.0200 (6)
Cl30.0868 (10)0.0707 (9)0.0678 (9)0.0084 (8)0.0188 (8)0.0070 (7)
Cl40.0887 (11)0.0508 (8)0.1044 (12)0.0061 (7)0.0424 (9)0.0156 (7)
Geometric parameters (Å, º) top
Ir1—C221.937 (3)C8—C91.377 (6)
Ir1—N32.056 (3)C8—H80.9500
Ir1—N12.059 (3)C9—C101.500 (5)
Ir1—O12.063 (2)C10—H10A0.9800
Ir1—N52.155 (3)C10—H10B0.9800
Ir1—Cl12.3500 (8)C10—H10C0.9800
B1—N41.529 (5)C11—C121.492 (5)
B1—N61.538 (5)C11—H11A0.9800
B1—N21.549 (5)C11—H11B0.9800
B1—H0B1.0000C11—H11C0.9800
N1—C21.350 (4)C12—C131.405 (4)
N1—N21.376 (4)C13—C141.373 (5)
N2—C41.346 (4)C13—H130.9500
N3—C71.336 (4)C14—C151.490 (5)
N3—N41.380 (4)C15—H15A0.9800
N4—C91.356 (4)C15—H15B0.9800
N5—C121.337 (4)C15—H15C0.9800
N5—N61.372 (3)C16—C211.418 (5)
N6—C141.348 (4)C16—C171.419 (5)
O1—C161.303 (4)C17—C181.366 (5)
C1—C21.492 (5)C17—H170.9500
C1—H1A0.9800C18—C191.414 (7)
C1—H1B0.9800C18—H180.9500
C1—H1C0.9800C19—C201.383 (6)
C2—C31.393 (5)C19—H190.9500
C3—C41.374 (5)C20—C211.425 (5)
C3—H30.9500C20—H200.9500
C4—C51.503 (5)C21—C221.435 (5)
C5—H5A0.9800C22—C231.494 (5)
C5—H5B0.9800C23—H23A0.9800
C5—H5C0.9800C23—H23B0.9800
C6—C71.494 (5)C23—H23C0.9800
C6—H6A0.9800C24—Cl31.716 (6)
C6—H6B0.9800C24—Cl21.732 (5)
C6—H6C0.9800C24—Cl41.765 (5)
C7—C81.397 (5)C24—H241.0000
C22—Ir1—N398.38 (13)N3—C7—C6125.0 (3)
C22—Ir1—N193.09 (12)C8—C7—C6126.3 (3)
N3—Ir1—N189.24 (10)C9—C8—C7106.8 (3)
C22—Ir1—O182.18 (12)C9—C8—H8126.6
N3—Ir1—O1177.55 (9)C7—C8—H8126.6
N1—Ir1—O193.12 (9)N4—C9—C8107.8 (3)
C22—Ir1—N5174.27 (12)N4—C9—C10122.9 (3)
N3—Ir1—N587.20 (10)C8—C9—C10129.2 (3)
N1—Ir1—N585.68 (10)C9—C10—H10A109.5
O1—Ir1—N592.29 (9)C9—C10—H10B109.5
C22—Ir1—Cl193.09 (10)H10A—C10—H10B109.5
N3—Ir1—Cl191.03 (8)C9—C10—H10C109.5
N1—Ir1—Cl1173.71 (8)H10A—C10—H10C109.5
O1—Ir1—Cl186.56 (6)H10B—C10—H10C109.5
N5—Ir1—Cl188.06 (7)C12—C11—H11A109.5
N4—B1—N6109.7 (3)C12—C11—H11B109.5
N4—B1—N2108.9 (3)H11A—C11—H11B109.5
N6—B1—N2107.8 (3)C12—C11—H11C109.5
N4—B1—H0B110.1H11A—C11—H11C109.5
N6—B1—H0B110.1H11B—C11—H11C109.5
N2—B1—H0B110.1N5—C12—C13109.3 (3)
C2—N1—N2107.0 (3)N5—C12—C11123.9 (3)
C2—N1—Ir1134.9 (2)C13—C12—C11126.9 (3)
N2—N1—Ir1117.83 (19)C14—C13—C12106.1 (3)
C4—N2—N1109.6 (3)C14—C13—H13127.0
C4—N2—B1130.4 (3)C12—C13—H13127.0
N1—N2—B1119.9 (3)N6—C14—C13107.9 (3)
C7—N3—N4108.0 (3)N6—C14—C15123.0 (3)
C7—N3—Ir1134.4 (2)C13—C14—C15129.1 (3)
N4—N3—Ir1117.6 (2)C14—C15—H15A109.5
C9—N4—N3108.7 (3)C14—C15—H15B109.5
C9—N4—B1130.7 (3)H15A—C15—H15B109.5
N3—N4—B1120.4 (3)C14—C15—H15C109.5
C12—N5—N6106.9 (2)H15A—C15—H15C109.5
C12—N5—Ir1135.0 (2)H15B—C15—H15C109.5
N6—N5—Ir1117.95 (19)O1—C16—C21119.6 (3)
C14—N6—N5109.8 (3)O1—C16—C17120.1 (3)
C14—N6—B1131.9 (3)C21—C16—C17120.2 (3)
N5—N6—B1117.7 (2)C18—C17—C16118.6 (4)
C16—O1—Ir1110.2 (2)C18—C17—H17120.7
C2—C1—H1A109.5C16—C17—H17120.7
C2—C1—H1B109.5C17—C18—C19122.7 (4)
H1A—C1—H1B109.5C17—C18—H18118.7
C2—C1—H1C109.5C19—C18—H18118.7
H1A—C1—H1C109.5C20—C19—C18119.3 (4)
H1B—C1—H1C109.5C20—C19—H19120.4
N1—C2—C3108.7 (3)C18—C19—H19120.4
N1—C2—C1124.7 (3)C19—C20—C21120.0 (4)
C3—C2—C1126.5 (3)C19—C20—H20120.0
C4—C3—C2106.9 (3)C21—C20—H20120.0
C4—C3—H3126.6C16—C21—C20119.3 (3)
C2—C3—H3126.6C16—C21—C22113.1 (3)
N2—C4—C3107.9 (3)C20—C21—C22127.3 (3)
N2—C4—C5123.4 (3)C21—C22—C23119.1 (3)
C3—C4—C5128.7 (3)C21—C22—Ir1112.6 (2)
C4—C5—H5A109.5C23—C22—Ir1127.8 (3)
C4—C5—H5B109.5C22—C23—H23A109.5
H5A—C5—H5B109.5C22—C23—H23B109.5
C4—C5—H5C109.5H23A—C23—H23B109.5
H5A—C5—H5C109.5C22—C23—H23C109.5
H5B—C5—H5C109.5H23A—C23—H23C109.5
C7—C6—H6A109.5H23B—C23—H23C109.5
C7—C6—H6B109.5Cl3—C24—Cl2111.8 (3)
H6A—C6—H6B109.5Cl3—C24—Cl4108.0 (3)
C7—C6—H6C109.5Cl2—C24—Cl4111.2 (3)
H6A—C6—H6C109.5Cl3—C24—H24108.6
H6B—C6—H6C109.5Cl2—C24—H24108.6
N3—C7—C8108.6 (3)Cl4—C24—H24108.6
C22—Ir1—N1—C245.2 (3)C1—C2—C3—C4179.5 (3)
N3—Ir1—N1—C2143.5 (3)N1—N2—C4—C30.6 (4)
O1—Ir1—N1—C237.2 (3)B1—N2—C4—C3176.4 (3)
N5—Ir1—N1—C2129.2 (3)N1—N2—C4—C5179.9 (3)
C22—Ir1—N1—N2142.2 (2)B1—N2—C4—C54.2 (5)
N3—Ir1—N1—N243.9 (2)C2—C3—C4—N20.3 (4)
O1—Ir1—N1—N2135.5 (2)C2—C3—C4—C5179.7 (3)
N5—Ir1—N1—N243.4 (2)N4—N3—C7—C80.4 (4)
C2—N1—N2—C40.6 (3)Ir1—N3—C7—C8178.1 (2)
Ir1—N1—N2—C4173.9 (2)N4—N3—C7—C6178.2 (3)
C2—N1—N2—B1176.9 (3)Ir1—N3—C7—C60.5 (5)
Ir1—N1—N2—B12.4 (4)N3—C7—C8—C90.1 (4)
N4—B1—N2—C4129.0 (3)C6—C7—C8—C9178.7 (3)
N6—B1—N2—C4111.9 (4)N3—N4—C9—C80.8 (4)
N4—B1—N2—N155.6 (4)B1—N4—C9—C8173.4 (3)
N6—B1—N2—N163.4 (4)N3—N4—C9—C10178.9 (3)
C22—Ir1—N3—C748.8 (3)B1—N4—C9—C104.6 (6)
N1—Ir1—N3—C7141.8 (3)C7—C8—C9—N40.6 (4)
N5—Ir1—N3—C7132.5 (3)C7—C8—C9—C10178.4 (4)
Cl1—Ir1—N3—C744.5 (3)N6—N5—C12—C130.1 (3)
C22—Ir1—N3—N4133.7 (2)Ir1—N5—C12—C13175.2 (2)
N1—Ir1—N3—N440.7 (2)N6—N5—C12—C11179.6 (3)
N5—Ir1—N3—N445.0 (2)Ir1—N5—C12—C114.4 (5)
Cl1—Ir1—N3—N4133.0 (2)N5—C12—C13—C140.1 (4)
C7—N3—N4—C90.8 (4)C11—C12—C13—C14179.6 (3)
Ir1—N3—N4—C9178.9 (2)N5—N6—C14—C130.1 (4)
C7—N3—N4—B1174.2 (3)B1—N6—C14—C13170.8 (3)
Ir1—N3—N4—B14.0 (4)N5—N6—C14—C15178.1 (3)
N6—B1—N4—C9115.4 (4)B1—N6—C14—C1511.1 (5)
N2—B1—N4—C9126.7 (3)C12—C13—C14—N60.1 (4)
N6—B1—N4—N358.3 (4)C12—C13—C14—C15177.9 (3)
N2—B1—N4—N359.6 (4)Ir1—O1—C16—C2110.4 (4)
N3—Ir1—N5—C12143.5 (3)Ir1—O1—C16—C17174.7 (3)
N1—Ir1—N5—C12127.0 (3)O1—C16—C17—C18175.3 (4)
O1—Ir1—N5—C1234.1 (3)C21—C16—C17—C180.4 (6)
Cl1—Ir1—N5—C1252.4 (3)C16—C17—C18—C191.4 (7)
N3—Ir1—N5—N641.6 (2)C17—C18—C19—C201.1 (7)
N1—Ir1—N5—N647.8 (2)C18—C19—C20—C210.3 (7)
O1—Ir1—N5—N6140.8 (2)O1—C16—C21—C20174.0 (3)
Cl1—Ir1—N5—N6132.8 (2)C17—C16—C21—C200.9 (5)
C12—N5—N6—C140.0 (3)O1—C16—C21—C220.0 (5)
Ir1—N5—N6—C14176.2 (2)C17—C16—C21—C22174.8 (3)
C12—N5—N6—B1172.3 (3)C19—C20—C21—C161.2 (6)
Ir1—N5—N6—B13.9 (3)C19—C20—C21—C22174.2 (4)
N4—B1—N6—C14128.6 (3)C16—C21—C22—C23161.3 (3)
N2—B1—N6—C14112.9 (4)C20—C21—C22—C2312.0 (5)
N4—B1—N6—N561.1 (4)C16—C21—C22—Ir111.4 (4)
N2—B1—N6—N557.4 (4)C20—C21—C22—Ir1175.3 (3)
C22—Ir1—O1—C1613.0 (2)N3—Ir1—C22—C21164.6 (2)
N1—Ir1—O1—C16105.7 (2)N1—Ir1—C22—C21105.8 (2)
N5—Ir1—O1—C16168.5 (2)O1—Ir1—C22—C2113.0 (2)
Cl1—Ir1—O1—C1680.6 (2)Cl1—Ir1—C22—C2173.1 (2)
N2—N1—C2—C30.4 (4)N3—Ir1—C22—C2323.6 (3)
Ir1—N1—C2—C3172.8 (2)N1—Ir1—C22—C2366.1 (3)
N2—N1—C2—C1179.9 (3)O1—Ir1—C22—C23158.9 (3)
Ir1—N1—C2—C16.7 (5)Cl1—Ir1—C22—C23115.1 (3)
N1—C2—C3—C40.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···Cl11.002.553.488 (5)156
C11—H11A···O10.982.373.230 (4)146
C11—H11C···Cl3i0.982.653.609 (4)166
Symmetry code: (i) x, y+1/2, z1/2.
Selected bond lengths (Å) top
Ir1—C221.937 (3)Ir1—O12.063 (2)
Ir1—N32.056 (3)Ir1—N52.155 (3)
Ir1—N12.059 (3)Ir1—Cl12.3500 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···Cl11.002.553.488 (5)155.6
C11—H11A···O10.982.373.230 (4)145.7
C11—H11C···Cl3i0.982.653.609 (4)166.0
Symmetry code: (i) x, y+1/2, z1/2.
Acknowledgements top

Financial support (FEDER) from the Spanish Ministry of Science (projects CTQ2010–17476 and Consolider-Ingenio 2010 CSD2007–00006) and the Junta de Andalucía (grant FQM-119 and project P09-FQM-4832) is acknowedged.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Conejero, S., Paneque, M., Poveda, M. L., Santos, L. L. & Carmona, E. (2010). Acc. Chem. Res. 43, 572–580.

Dyker, G. (1999). Angew. Chem. Int. Ed. 38, 1698–1712.

Gutiérrez-Puebla, E., Monge, A., Nicasio, M. C., Pérez, P. J., Poveda, M. L. & Carmona, E. (1998). Chem. Eur. J. 4, 2225–2236.

Labinger, J. A. & Bercaw, J. E. (2002). Nature, 417, 507–514.

Lara, P., Paneque, M., Poveda, M. L., Santos, L. L., Valpuesta, J. E. V., Carmona, E., Moncho, S., Ujaque, G., Lledós, A., Álvarez, E. & Mereiter, K. (2009). Chem. Eur. J. 15, 9034–9045.

Lin, Y.-S. & Yamamoto, A. (1999). In Activation of Unreactive Bonds and Organic Synthesis, edited by S. Murai. Berlin: Springer.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Santos, L. L., Mereiter, K. & Paneque, M. (2013). Organometallics, 32, 565–569.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.