supplementary materials


mw2105 scheme

Acta Cryst. (2013). E69, m207-m208    [ doi:10.1107/S1600536813006685 ]

Poly[diaquabis([mu]-4,4'-bipyridine-[kappa]2N:N')bis(ethane-1,2-diol-[kappa]O)bis([mu]-sulfato-[kappa]2O:O')dicobalt(II)]

K.-L. Zhong

Abstract top

In the title compound, [Co2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, there are two crystallographically independent CoII ions, each of which lies on a twofold rotation axis and has a slightly distorted octahedral environment. One CoII ion is coordinated by two N atoms from two bridging 4,4'-bipyridine (4,4'-bipy) ligands, two O atoms from two sulfate ions and two O atoms from aqua ligands. The second CoII ion is similar but with ethane-1,2-diol ligands in place of water molecules. The sulfate anions act as bridging ligands to link two adjacent CoII ions together, leading to the formation of linear ...Co1Co2Co1Co2...chains along the a axis. Adjacent chains are further bridged by 4,4'-bipy ligands, which are also located on the twofold rotation axis, resulting in a two-dimensional layered polymer extending parallel to (001). In the crystal, the layers are linked by extensive O-H...O hydrogen-bonding interactions involving the O atoms of the water molecules and ethane-1,2-diol molecules, resulting in a three-dimensional supramolecular network.

Comment top

In past decades, the design and synthesis of metal-organic coordination polymers with transition metals have attracted much attention because of their interesting topologies and potential applications in the areas of materials chemistry (Cui et al., 2002; Sarma et al., 2009; Zhang et al., 2010). It is well known that 4,4'-bipyridine (4,4'-bipy) has been widely applied as an auxiliary bridging ligand to construct novel one-, two- and three-dimensional polymers (Tong & Chen, 2000; Croitor et al., 2011). Some interesting cobalt–(4,4'-bipy) coordination polymers have been synthesized and characterized including Co(SO4)(C10H8N2)(H2O)3.2C2H6O2 (Lu et al., 2006), [Co2(H2O)2(OH)2(4,4'-bipy)8](NO3)2.2(4,4'-bipy).10H2O (Luachan et al., 2007), [Co2(4,4'-bipyridine)2(SO4)2(H2O)6].4H2O (Prior et al., 2011), Co(SO4)(H2O)3(4,4'-bipy).2H2O and Co(Cl)2(DMSO)2(4,4'-bipy) (Lu et al., 1998) and {[Co(H2O)6][Co(SO4)2(H2O)2(C10H8N2)][Co(SO4)(H2O)3(C10H8N2)]}n (Zhong & Qian, 2012).

In the present work we describe the synthesis and structure of the new complex [Co2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, (I), which displays a three-dimensional supramolecular network with two-dimensional polymeric layers and was obtained via a solvo-thermal reaction. It is isotypic with the previously reported CuII and NiII analogs (Zhong et al., 2011; Zhong, 2013).

There are two crystallographically unique CoII metal centers in the title compound, each lying on a crystallographic two-fold axis and having a slightly distorted octahedral CoN2O4 coordination environment. Atom Co1 is coordinated by two 4,4'-bipyridine N atoms (N1 and N2), two sulfate ligand O atoms (O2) and two water molecule O atoms (O1W). The second CoII center (Co2) is surrounded by two N atoms (N3 and N4) from two bridging 4,4-bipyridine and four O atoms, two from bridging sulfate anions (O1) and two from ethane-1,2-diol ligands (O5) (Fig. 1). The N atoms occupy the axial positions and the O atoms the equatorial sites. The Co—N bond distances [2.1223 (19)–2.1540 (19) Å], the Co—O bond distances [2.0938 (13)-2.1262 (12) Å] and the cis bond angles around the CoII center [87.30 (3)–92.70 (3)°] are in good accord with those found in the previously reported Co–(4,4'-bipy) complexes. The bridging 4,4'-bipyridine ligand lies on a twofold axis and links two different CoII cations, giving rise to the formation of one-dimensional linear ···Co1—bipy—Co2—bipy··· chains along the b axis. The Co1 and Co2 centers of the adjacent ···Co1—bipy—Co2—bipy··· chains are further cross-linked by the sulfate anions in the O—S—O bridging mode, forming linear ···Co1—O—SO2— Co2—O—SO2—O··· chains running parallel to the a axis. The ···M—O—SO2—O—M··· and ···M—bipy—M··· chains are almost orthogonal resulting in a two-dimensional layered polymer (Fig. 2). In the crystal structure, the two-dimensional polymeric layers are linked by extensive O—H···O hydrogen-bonding involving the water molecules, ethane-1,2-diol molecules and sulfate anions leading to the formation of a three-dimensional supramolecular network structure.

Related literature top

For isostructural compounds, see: Zhong et al. (2011); Zhong (2013). For metal complexes with the 4,4'-bipyridine ligand, see: Tong & Chen (2000); Croitor et al. (2011); Lu et al. (2006, 1998); Luachan et al. (2007); Prior et al. (2011); Zhong & Qian (2012). For background to coordination polymers, see: Cui et al. (2002); Sarma et al. (2009); Zhang et al. (2010).

Experimental top

Reagents and solvents used were of commercially available quality. 0.2 mmol of 4,4'-bipyridine(4,4'-bipy), 0.1 mmol of CoSO4.7H2O, 2.0 ml of ethane-1,2-diol and 1.0 ml of water were mixed and placed in a thick Pyrex tube which was sealed and heated to 413 K for 96 h. The tube was cooled to ambient temperature and pink block-shaped crystals of the title compound were obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically. The aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of ethane-1,2-diol were were geometrically placed and and refined using a riding model [O—H = 0.82 Å and C—H = 0.97 Å; Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(C)]. The water H atoms were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond network, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H···H distances [0.85 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atom [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 35% probability level. H atoms have been omitted for clarity. [symmetry codes: (A) -x, y, -z + 3/2; (B) -x + 1, y, -z + 3/2; (C) x - 1/2, y + 1/2, z; (D) -x + 1/2, y + 1/2, -z + 3/2; (E) x + 1/2, y + 1/2, -z]
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms have been omitted for clarity.
Poly[diaquabis(µ-4,4'-bipyridine-κ2N:N')bis(ethane-1,2-diol-κO)bis(µ-sulfato-κ2O:O')dicobalt(II)] top
Crystal data top
[Co2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]F(000) = 1608
Mr = 782.53Dx = 1.707 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 6960 reflections
a = 11.124 (2) Åθ = 3.3–27.5°
b = 22.792 (5) ŵ = 1.30 mm1
c = 12.066 (2) ÅT = 223 K
β = 95.51 (3)°Block, pink
V = 3045.2 (11) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3453 independent reflections
Radiation source: fine-focus sealed tube3047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1214
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2429
Tmin = 0.722, Tmax = 1.000l = 1515
8573 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1682P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3453 reflectionsΔρmax = 0.44 e Å3
214 parametersΔρmin = 0.49 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (3)
Crystal data top
[Co2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]V = 3045.2 (11) Å3
Mr = 782.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.124 (2) ŵ = 1.30 mm1
b = 22.792 (5) ÅT = 223 K
c = 12.066 (2) Å0.35 × 0.25 × 0.20 mm
β = 95.51 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3453 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3047 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 1.000Rint = 0.020
8573 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.44 e Å3
S = 1.05Δρmin = 0.49 e Å3
3453 reflectionsAbsolute structure: ?
214 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.379656 (12)0.75000.01469 (10)
Co20.50000.378829 (12)0.75000.01552 (10)
S10.26448 (3)0.397753 (16)0.89235 (3)0.01772 (11)
O10.38920 (10)0.37753 (4)0.88224 (9)0.0201 (2)
O1W0.02400 (11)0.37527 (4)0.57750 (10)0.0236 (3)
H1WA0.06850.39700.54130.035*
H1WB0.04380.37700.53860.035*
O20.18890 (10)0.37997 (5)0.78736 (9)0.0200 (2)
O30.21712 (11)0.36754 (6)0.98602 (10)0.0294 (3)
O40.26137 (11)0.46083 (5)0.90508 (12)0.0374 (3)
O50.34406 (10)0.37517 (5)0.63828 (10)0.0242 (3)
H50.28170.37720.66910.036*
O60.19241 (10)0.43332 (5)0.47373 (10)0.0309 (3)
H6A0.20140.46780.45670.046*
N10.00000.47277 (8)0.75000.0187 (4)
N20.00000.28541 (8)0.75000.0189 (4)
N30.50000.47291 (8)0.75000.0179 (4)
N40.50000.28432 (8)0.75000.0215 (4)
C10.07997 (14)0.50339 (7)0.69724 (13)0.0215 (3)
H1A0.13690.48290.66090.026*
C20.08205 (14)0.56396 (7)0.69408 (13)0.0211 (3)
H2A0.13810.58330.65470.025*
C30.00000.59596 (10)0.75000.0192 (4)
C40.06167 (15)0.25465 (7)0.83143 (14)0.0239 (3)
H4A0.10530.27510.88860.029*
C50.06372 (15)0.19388 (7)0.83470 (14)0.0234 (3)
H5A0.10750.17460.89330.028*
C60.00000.16175 (9)0.75000.0179 (4)
C70.56963 (15)0.50386 (7)0.82523 (14)0.0269 (4)
H7A0.61880.48340.87870.032*
C80.57272 (15)0.56448 (7)0.82805 (14)0.0260 (4)
H8A0.62340.58370.88210.031*
C90.50000.59664 (9)0.75000.0170 (4)
C100.41224 (18)0.25359 (8)0.78999 (19)0.0387 (5)
H10A0.34950.27400.81820.046*
C110.40926 (17)0.19292 (8)0.79184 (18)0.0388 (5)
H11A0.34590.17370.82140.047*
C120.50000.16078 (10)0.75000.0204 (4)
C140.31776 (15)0.35169 (8)0.52895 (14)0.0269 (4)
H14A0.24790.32610.52750.032*
H14B0.38570.32850.50930.032*
C150.29304 (16)0.40015 (8)0.44611 (14)0.0293 (4)
H15A0.36330.42530.44640.035*
H15B0.27650.38380.37200.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01344 (16)0.01259 (15)0.01800 (17)0.0000.00121 (11)0.000
Co20.01370 (17)0.01303 (15)0.01967 (17)0.0000.00082 (12)0.000
S10.01530 (19)0.0186 (2)0.0190 (2)0.00168 (14)0.00014 (13)0.00353 (14)
O10.0145 (5)0.0238 (6)0.0218 (6)0.0020 (4)0.0012 (4)0.0004 (4)
O1W0.0201 (6)0.0301 (6)0.0209 (6)0.0032 (5)0.0029 (5)0.0025 (4)
O20.0147 (5)0.0267 (6)0.0185 (6)0.0003 (4)0.0009 (4)0.0023 (4)
O30.0198 (6)0.0491 (8)0.0196 (6)0.0006 (5)0.0031 (5)0.0040 (5)
O40.0347 (7)0.0207 (6)0.0548 (9)0.0068 (5)0.0059 (6)0.0131 (6)
O50.0176 (6)0.0351 (7)0.0198 (6)0.0006 (5)0.0016 (5)0.0034 (5)
O60.0283 (6)0.0273 (6)0.0380 (7)0.0006 (5)0.0080 (5)0.0119 (5)
N10.0192 (9)0.0150 (8)0.0215 (10)0.0000.0003 (7)0.000
N20.0194 (9)0.0147 (9)0.0221 (10)0.0000.0002 (7)0.000
N30.0175 (9)0.0147 (8)0.0214 (10)0.0000.0016 (7)0.000
N40.0212 (9)0.0140 (9)0.0295 (11)0.0000.0036 (8)0.000
C10.0209 (7)0.0184 (7)0.0258 (8)0.0009 (6)0.0046 (6)0.0005 (6)
C20.0216 (7)0.0176 (7)0.0247 (8)0.0007 (6)0.0058 (6)0.0016 (6)
C30.0212 (11)0.0161 (10)0.0199 (11)0.0000.0000 (8)0.000
C40.0271 (8)0.0184 (7)0.0245 (8)0.0006 (7)0.0055 (7)0.0017 (6)
C50.0279 (8)0.0182 (8)0.0224 (8)0.0011 (7)0.0063 (6)0.0007 (6)
C60.0171 (10)0.0174 (10)0.0193 (11)0.0000.0024 (8)0.000
C70.0312 (9)0.0179 (8)0.0292 (9)0.0020 (7)0.0097 (7)0.0015 (7)
C80.0314 (9)0.0183 (8)0.0258 (9)0.0008 (7)0.0099 (7)0.0019 (6)
C90.0170 (10)0.0146 (10)0.0198 (11)0.0000.0034 (8)0.000
C100.0356 (10)0.0181 (8)0.0670 (14)0.0013 (8)0.0280 (10)0.0010 (8)
C110.0358 (10)0.0178 (8)0.0679 (14)0.0026 (8)0.0314 (10)0.0002 (8)
C120.0217 (11)0.0164 (10)0.0229 (11)0.0000.0010 (9)0.000
C140.0271 (8)0.0273 (9)0.0258 (9)0.0018 (7)0.0009 (7)0.0082 (7)
C150.0283 (9)0.0386 (10)0.0219 (9)0.0008 (8)0.0072 (7)0.0001 (7)
Geometric parameters (Å, º) top
Co1—O22.1064 (12)C1—C21.381 (2)
Co1—O2i2.1064 (12)C1—H1A0.9300
Co1—N12.1223 (19)C2—C31.3924 (19)
Co1—O1Wi2.1262 (12)C2—H2A0.9300
Co1—O1W2.1262 (12)C3—C2i1.392 (2)
Co1—N22.1480 (19)C3—C12iii1.477 (3)
Co2—O52.0938 (13)C4—C51.386 (2)
Co2—O5ii2.0938 (13)C4—H4A0.9300
Co2—O12.1081 (12)C5—C61.3943 (19)
Co2—O1ii2.1081 (12)C5—H5A0.9300
Co2—N32.1443 (19)C6—C5i1.3943 (19)
Co2—N42.1540 (19)C6—C9iv1.484 (3)
S1—O41.4465 (13)C7—C81.382 (2)
S1—O31.4641 (13)C7—H7A0.9300
S1—O11.4781 (12)C8—C91.390 (2)
S1—O21.5072 (12)C8—H8A0.9300
O1W—H1WA0.8500C9—C8ii1.390 (2)
O1W—H1WB0.8500C9—C6v1.484 (3)
O5—C141.428 (2)C10—C111.384 (2)
O5—H50.8200C10—H10A0.9300
O6—C151.417 (2)C11—C121.381 (2)
O6—H6A0.8200C11—H11A0.9300
N1—C1i1.3389 (18)C12—C11ii1.381 (2)
N1—C11.3389 (19)C12—C3vi1.477 (3)
N2—C4i1.3409 (19)C14—C151.497 (2)
N2—C41.3409 (19)C14—H14A0.9700
N3—C71.3366 (19)C14—H14B0.9700
N3—C7ii1.3366 (19)C15—H15A0.9700
N4—C101.329 (2)C15—H15B0.9700
N4—C10ii1.329 (2)
O2—Co1—O2i179.61 (6)C7ii—N3—Co2121.85 (10)
O2—Co1—N189.80 (3)C10—N4—C10ii116.4 (2)
O2i—Co1—N189.80 (3)C10—N4—Co2121.80 (11)
O2—Co1—O1Wi90.41 (5)C10ii—N4—Co2121.80 (11)
O2i—Co1—O1Wi89.60 (5)N1—C1—C2123.21 (15)
N1—Co1—O1Wi92.70 (3)N1—C1—H1A118.4
O2—Co1—O1W89.60 (5)C2—C1—H1A118.4
O2i—Co1—O1W90.41 (5)C1—C2—C3119.78 (15)
N1—Co1—O1W92.70 (3)C1—C2—H2A120.1
O1Wi—Co1—O1W174.60 (6)C3—C2—H2A120.1
O2—Co1—N290.20 (3)C2—C3—C2i116.8 (2)
O2i—Co1—N290.20 (3)C2—C3—C12iii121.59 (10)
N1—Co1—N2180.0C2i—C3—C12iii121.59 (10)
O1Wi—Co1—N287.30 (3)N2—C4—C5123.32 (15)
O1W—Co1—N287.30 (3)N2—C4—H4A118.3
O5—Co2—O5ii175.44 (6)C5—C4—H4A118.3
O5—Co2—O188.75 (5)C4—C5—C6119.89 (15)
O5ii—Co2—O191.18 (5)C4—C5—H5A120.1
O5—Co2—O1ii91.18 (5)C6—C5—H5A120.1
O5ii—Co2—O1ii88.75 (5)C5—C6—C5i116.6 (2)
O1—Co2—O1ii178.39 (6)C5—C6—C9iv121.68 (10)
O5—Co2—N392.28 (3)C5i—C6—C9iv121.68 (10)
O5ii—Co2—N392.28 (3)N3—C7—C8123.75 (15)
O1—Co2—N390.81 (3)N3—C7—H7A118.1
O1ii—Co2—N390.81 (3)C8—C7—H7A118.1
O5—Co2—N487.72 (3)C7—C8—C9119.93 (15)
O5ii—Co2—N487.72 (3)C7—C8—H8A120.0
O1—Co2—N489.19 (3)C9—C8—H8A120.0
O1ii—Co2—N489.19 (3)C8ii—C9—C8116.4 (2)
N3—Co2—N4180.0C8ii—C9—C6v121.82 (10)
O4—S1—O3111.80 (8)C8—C9—C6v121.82 (10)
O4—S1—O1110.55 (7)N4—C10—C11123.51 (17)
O3—S1—O1109.10 (7)N4—C10—H10A118.2
O4—S1—O2109.84 (7)C11—C10—H10A118.2
O3—S1—O2108.02 (7)C12—C11—C10120.31 (17)
O1—S1—O2107.40 (7)C12—C11—H11A119.8
S1—O1—Co2132.83 (7)C10—C11—H11A119.8
Co1—O1W—H1WA127.6C11ii—C12—C11116.0 (2)
Co1—O1W—H1WB110.5C11ii—C12—C3vi122.02 (11)
H1WA—O1W—H1WB102.6C11—C12—C3vi122.02 (11)
S1—O2—Co1130.19 (7)O5—C14—C15110.40 (14)
C14—O5—Co2133.90 (10)O5—C14—H14A109.6
C14—O5—H5109.5C15—C14—H14A109.6
Co2—O5—H5113.0O5—C14—H14B109.6
C15—O6—H6A109.5C15—C14—H14B109.6
C1i—N1—C1117.17 (19)H14A—C14—H14B108.1
C1i—N1—Co1121.41 (10)O6—C15—C14109.59 (14)
C1—N1—Co1121.41 (10)O6—C15—H15A109.8
C4i—N2—C4116.96 (19)C14—C15—H15A109.8
C4i—N2—Co1121.52 (10)O6—C15—H15B109.8
C4—N2—Co1121.52 (10)C14—C15—H15B109.8
C7—N3—C7ii116.29 (19)H15A—C15—H15B108.2
C7—N3—Co2121.85 (10)
O4—S1—O1—Co277.34 (11)O1—Co2—N3—C778.37 (10)
O3—S1—O1—Co2159.32 (8)O1ii—Co2—N3—C7101.63 (10)
O2—S1—O1—Co242.47 (10)O5—Co2—N3—C7ii12.85 (10)
O5—Co2—O1—S128.26 (9)O5ii—Co2—N3—C7ii167.15 (10)
O5ii—Co2—O1—S1156.30 (9)O1—Co2—N3—C7ii101.63 (10)
N3—Co2—O1—S164.00 (8)O1ii—Co2—N3—C7ii78.37 (10)
N4—Co2—O1—S1116.00 (8)O5—Co2—N4—C1065.05 (12)
O4—S1—O2—Co171.63 (10)O5ii—Co2—N4—C10114.95 (12)
O3—S1—O2—Co150.55 (10)O1—Co2—N4—C1023.74 (12)
O1—S1—O2—Co1168.10 (7)O1ii—Co2—N4—C10156.26 (12)
N1—Co1—O2—S169.57 (8)O5—Co2—N4—C10ii114.95 (12)
O1Wi—Co1—O2—S123.13 (9)O5ii—Co2—N4—C10ii65.05 (12)
O1W—Co1—O2—S1162.27 (8)O1—Co2—N4—C10ii156.26 (12)
N2—Co1—O2—S1110.43 (8)O1ii—Co2—N4—C10ii23.74 (12)
O1—Co2—O5—C14150.40 (14)C1i—N1—C1—C20.83 (11)
O1ii—Co2—O5—C1427.99 (14)Co1—N1—C1—C2179.17 (11)
N3—Co2—O5—C14118.84 (14)N1—C1—C2—C31.6 (2)
N4—Co2—O5—C1461.16 (14)C1—C2—C3—C2i0.77 (10)
O2—Co1—N1—C1i134.02 (9)C1—C2—C3—C12iii179.23 (10)
O2i—Co1—N1—C1i45.98 (9)C4i—N2—C4—C50.20 (12)
O1Wi—Co1—N1—C1i43.61 (9)Co1—N2—C4—C5179.80 (12)
O1W—Co1—N1—C1i136.39 (9)N2—C4—C5—C60.4 (2)
O2—Co1—N1—C145.98 (9)C4—C5—C6—C5i0.19 (11)
O2i—Co1—N1—C1134.02 (9)C4—C5—C6—C9iv179.81 (11)
O1Wi—Co1—N1—C1136.39 (9)C7ii—N3—C7—C80.21 (13)
O1W—Co1—N1—C143.61 (9)Co2—N3—C7—C8179.79 (13)
O2—Co1—N2—C4i133.47 (9)N3—C7—C8—C90.4 (3)
O2i—Co1—N2—C4i46.53 (9)C7—C8—C9—C8ii0.19 (12)
O1Wi—Co1—N2—C4i136.13 (9)C7—C8—C9—C6v179.81 (12)
O1W—Co1—N2—C4i43.87 (9)C10ii—N4—C10—C110.26 (17)
O2—Co1—N2—C446.53 (9)Co2—N4—C10—C11179.74 (17)
O2i—Co1—N2—C4133.47 (9)N4—C10—C11—C120.5 (3)
O1Wi—Co1—N2—C443.87 (9)C10—C11—C12—C11ii0.24 (15)
O1W—Co1—N2—C4136.13 (9)C10—C11—C12—C3vi179.76 (15)
O5—Co2—N3—C7167.15 (10)Co2—O5—C14—C15111.40 (14)
O5ii—Co2—N3—C712.85 (10)O5—C14—C15—O660.27 (18)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4vii0.821.892.6866 (17)165
O1W—H1WA···O60.851.862.6980 (17)168
O1W—H1WB···O3i0.851.932.7237 (18)154
O5—H5···O20.821.842.6122 (17)156
Symmetry codes: (i) x, y, z+3/2; (vii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.821.892.6866 (17)165
O1W—H1WA···O60.851.862.6980 (17)168
O1W—H1WB···O3ii0.851.932.7237 (18)154
O5—H5···O20.821.842.6122 (17)156
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+3/2.
Acknowledgements top

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013-10).

references
References top

Croitor, L., Coropceanu, E. B., Siminel, A. V., Kravtsov, V. C. & Fonari, M. S. (2011). Cryst. Growth Des. 11, 3536–3544.

Cui, Y., Evans, O. R., Ngo, H. L., White, P. S. & Lin, W. B. (2002). Angew. Chem. Int. Ed. 41, 1159–1162.

Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.

Lu, J., Yu, C., Niu, T. Y., Paliwala, T., Crisci, G., Somosa, F. & Jacobson, A. J. (1998). Inorg. Chem. 37, 4637–4640.

Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448–m450.

Luachan, S., Pakawatchai, C. & Rujiwatra, A. (2007). J. Inorg. Organomet. Polym. Mater. 30, 561–568.

Prior, T.-J., Yotnoi, B. & Rujiwatra, A. (2011). Polyhedron, 30, 259–268.

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sarma, D., Ramanujachary, K. V., Lofland, S. E., Magdaleno, T. & Natarajan, S. (2009). Inorg. Chem. 48, 11660–11676.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tong, M.-L. & Chen, X.-M. (2000). CrystEngComm, 2, 1–5.

Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.

Zhong, K.-L. (2013). Acta Cryst. E69, m154–m155.

Zhong, K.-L., Chen, L. & Chen, L. (2011). Acta Cryst. C67, m62–m64.

Zhong, K.-L. & Qian, M.-Y. (2012). Acta Cryst. C68, m265–m268.