supplementary materials


nc2307 scheme

Acta Cryst. (2013). E69, m211    [ doi:10.1107/S1600536813006879 ]

Dichloridobis(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-thiolate-[kappa]S)copper(II)

U. Flörke, A. Ahmida, J. Schröder, H. Egold and G. Henkel

Abstract top

The molecular structure of the title compound, [CuCl2(C11H20N2S)2], shows the CuII atom with a distorted tetrahedral geometry from two Cl atoms [Cu-Cl = 2.2182 (6) Å] and two thione S atoms [Cu-S = 2.3199 (6) Å]. The angles at the copper cation, which lies on a twofold rotation axis, are Cl-Cu-Cl = 142.84 (4)°, Cl-Cu-S = 94.80 (2) and 99.97 (2)°, and S-Cu-S = 132.46 (4)°. The planes of the two imidazolium rings make a dihedral angle of 76.92 (8)°.

Related literature top

For structures of related compounds, see: Griffith et al. (1978); Kuhn et al. (1996).

Experimental top

To a solution of 1,3-diisopropyl-4,5-dimethylimidazoline-2-thione (0.584 mg, 2.75 mmol) in acetonitrile (40 ml) CuCl2 H2O (0.168 mg, 1.25 mmol) was added and the mixture was stirred at room temperature for 48 h. Afterwards the solvent was removed under vacuum. Blue crystals were obtained from an acetonitrile solution by diethyl ether diffusion.

Refinement top

All Hydrogen atom positions were clearly derived from difference maps, then refined at calculated positions riding on the parent atoms with C—H 0.98 - 1.00 Å and isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labeling. Displacement ellipsoids are drawn at the 50% probability level.
Dichloridobis(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-thiolate-κS)copper(II) top
Crystal data top
[CuCl2(C11H20N2S)2]F(000) = 1180
Mr = 559.14Dx = 1.346 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2598 reflections
a = 14.0663 (12) Åθ = 2.5–22.4°
b = 13.1359 (11) ŵ = 1.15 mm1
c = 14.9278 (13) ÅT = 120 K
V = 2758.3 (4) Å3Prism, blue
Z = 40.45 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3418 independent reflections
Radiation source: sealed tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1718
Tmin = 0.846, Tmax = 0.991k = 1717
26735 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
3418 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[CuCl2(C11H20N2S)2]V = 2758.3 (4) Å3
Mr = 559.14Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 14.0663 (12) ŵ = 1.15 mm1
b = 13.1359 (11) ÅT = 120 K
c = 14.9278 (13) Å0.45 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2575 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.991Rint = 0.055
26735 measured reflectionsθmax = 28.2°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.52 e Å3
S = 1.07Δρmin = 0.32 e Å3
3418 reflectionsAbsolute structure: ?
147 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.67838 (3)0.75000.02220 (13)
Cl10.63711 (4)0.62457 (5)0.80610 (4)0.03363 (17)
S10.56717 (4)0.74956 (5)0.62263 (4)0.02594 (16)
N10.44956 (13)0.73957 (15)0.47742 (12)0.0214 (4)
N20.41116 (13)0.86096 (15)0.56948 (12)0.0232 (4)
C10.47271 (16)0.78364 (18)0.55592 (15)0.0218 (5)
C20.50291 (16)0.65185 (18)0.44065 (16)0.0254 (5)
H2A0.54210.62390.49080.030*
C30.4384 (2)0.5668 (2)0.4097 (2)0.0435 (7)
H3A0.39130.55220.45640.065*
H3B0.47630.50560.39800.065*
H3C0.40570.58750.35470.065*
C40.57176 (19)0.6862 (2)0.36847 (18)0.0361 (6)
H4A0.53670.72150.32100.054*
H4B0.60420.62670.34320.054*
H4C0.61880.73250.39460.054*
C50.37268 (16)0.7910 (2)0.44012 (15)0.0255 (5)
C60.32782 (19)0.7665 (2)0.35256 (16)0.0375 (7)
H6A0.28440.82150.33550.056*
H6B0.29220.70260.35770.056*
H6C0.37730.75920.30680.056*
C70.34874 (16)0.86563 (19)0.49766 (16)0.0261 (5)
C80.27223 (19)0.9433 (2)0.48648 (18)0.0379 (7)
H8A0.30101.01000.47520.057*
H8B0.23380.94640.54120.057*
H8C0.23170.92440.43570.057*
C90.41332 (18)0.92589 (19)0.64987 (15)0.0279 (5)
H9A0.46650.90030.68820.033*
C100.4372 (3)1.0351 (2)0.6261 (2)0.0581 (9)
H10A0.49441.03650.58870.087*
H10B0.44861.07390.68110.087*
H10C0.38401.06540.59320.087*
C110.32354 (18)0.9163 (2)0.70488 (17)0.0347 (6)
H11A0.27250.95550.67650.052*
H11B0.33500.94270.76530.052*
H11C0.30490.84450.70850.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0219 (2)0.0220 (2)0.0227 (2)0.0000.00117 (16)0.000
Cl10.0280 (3)0.0363 (4)0.0366 (3)0.0100 (3)0.0029 (3)0.0046 (3)
S10.0180 (3)0.0380 (4)0.0218 (3)0.0020 (3)0.0010 (2)0.0018 (3)
N10.0177 (10)0.0267 (11)0.0198 (9)0.0028 (8)0.0009 (7)0.0018 (8)
N20.0184 (10)0.0283 (11)0.0229 (9)0.0004 (8)0.0016 (8)0.0015 (8)
C10.0173 (11)0.0272 (12)0.0208 (11)0.0027 (10)0.0033 (9)0.0035 (9)
C20.0279 (13)0.0237 (12)0.0246 (11)0.0027 (10)0.0000 (10)0.0004 (9)
C30.0509 (19)0.0306 (16)0.0488 (17)0.0065 (13)0.0044 (14)0.0060 (13)
C40.0337 (15)0.0368 (16)0.0378 (15)0.0084 (12)0.0102 (12)0.0047 (12)
C50.0174 (12)0.0355 (14)0.0236 (11)0.0019 (10)0.0001 (9)0.0023 (10)
C60.0285 (14)0.0579 (19)0.0263 (12)0.0046 (13)0.0043 (11)0.0051 (12)
C70.0197 (12)0.0344 (15)0.0242 (11)0.0005 (10)0.0003 (9)0.0046 (10)
C80.0311 (15)0.0493 (18)0.0332 (13)0.0120 (13)0.0022 (12)0.0034 (12)
C90.0283 (13)0.0322 (14)0.0232 (11)0.0021 (11)0.0006 (10)0.0040 (10)
C100.088 (3)0.0421 (19)0.0439 (17)0.0260 (18)0.0083 (18)0.0099 (15)
C110.0338 (15)0.0402 (16)0.0301 (13)0.0084 (13)0.0076 (11)0.0034 (11)
Geometric parameters (Å, º) top
Cu1—Cl1i2.2182 (6)C4—H4C0.9800
Cu1—Cl12.2182 (6)C5—C71.346 (3)
Cu1—S12.3199 (6)C5—C61.487 (3)
Cu1—S1i2.3199 (6)C6—H6A0.9800
S1—C11.720 (2)C6—H6B0.9800
N1—C11.347 (3)C6—H6C0.9800
N1—C51.392 (3)C7—C81.492 (3)
N1—C21.481 (3)C8—H8A0.9800
N2—C11.350 (3)C8—H8B0.9800
N2—C71.387 (3)C8—H8C0.9800
N2—C91.472 (3)C9—C111.512 (3)
C2—C31.512 (3)C9—C101.515 (4)
C2—C41.517 (3)C9—H9A1.0000
C2—H2A1.0000C10—H10A0.9800
C3—H3A0.9800C10—H10B0.9800
C3—H3B0.9800C10—H10C0.9800
C3—H3C0.9800C11—H11A0.9800
C4—H4A0.9800C11—H11B0.9800
C4—H4B0.9800C11—H11C0.9800
Cl1i—Cu1—Cl1142.84 (4)C7—C5—C6127.8 (2)
Cl1i—Cu1—S199.97 (2)N1—C5—C6125.2 (2)
Cl1—Cu1—S194.80 (2)C5—C6—H6A109.5
Cl1i—Cu1—S1i94.80 (2)C5—C6—H6B109.5
Cl1—Cu1—S1i99.97 (2)H6A—C6—H6B109.5
S1—Cu1—S1i132.46 (4)C5—C6—H6C109.5
C1—S1—Cu1105.36 (8)H6A—C6—H6C109.5
C1—N1—C5109.10 (19)H6B—C6—H6C109.5
C1—N1—C2122.31 (19)C5—C7—N2107.6 (2)
C5—N1—C2128.57 (19)C5—C7—C8127.4 (2)
C1—N2—C7108.9 (2)N2—C7—C8125.0 (2)
C1—N2—C9123.01 (19)C7—C8—H8A109.5
C7—N2—C9128.1 (2)C7—C8—H8B109.5
N1—C1—N2107.4 (2)H8A—C8—H8B109.5
N1—C1—S1125.36 (18)C7—C8—H8C109.5
N2—C1—S1127.19 (18)H8A—C8—H8C109.5
N1—C2—C3112.6 (2)H8B—C8—H8C109.5
N1—C2—C4110.8 (2)N2—C9—C11112.2 (2)
C3—C2—C4112.7 (2)N2—C9—C10111.2 (2)
N1—C2—H2A106.8C11—C9—C10113.0 (2)
C3—C2—H2A106.8N2—C9—H9A106.6
C4—C2—H2A106.8C11—C9—H9A106.6
C2—C3—H3A109.5C10—C9—H9A106.6
C2—C3—H3B109.5C9—C10—H10A109.5
H3A—C3—H3B109.5C9—C10—H10B109.5
C2—C3—H3C109.5H10A—C10—H10B109.5
H3A—C3—H3C109.5C9—C10—H10C109.5
H3B—C3—H3C109.5H10A—C10—H10C109.5
C2—C4—H4A109.5H10B—C10—H10C109.5
C2—C4—H4B109.5C9—C11—H11A109.5
H4A—C4—H4B109.5C9—C11—H11B109.5
C2—C4—H4C109.5H11A—C11—H11B109.5
H4A—C4—H4C109.5C9—C11—H11C109.5
H4B—C4—H4C109.5H11A—C11—H11C109.5
C7—C5—N1107.0 (2)H11B—C11—H11C109.5
Cl1i—Cu1—S1—C126.05 (9)C1—N1—C5—C71.0 (3)
Cl1—Cu1—S1—C1171.81 (9)C2—N1—C5—C7179.6 (2)
S1i—Cu1—S1—C179.98 (9)C1—N1—C5—C6178.6 (2)
C5—N1—C1—N20.8 (2)C2—N1—C5—C60.0 (4)
C2—N1—C1—N2179.55 (19)N1—C5—C7—N20.7 (3)
C5—N1—C1—S1176.49 (17)C6—C5—C7—N2178.8 (2)
C2—N1—C1—S12.2 (3)N1—C5—C7—C8178.2 (2)
C7—N2—C1—N10.4 (3)C6—C5—C7—C81.3 (4)
C9—N2—C1—N1178.81 (19)C1—N2—C7—C50.2 (3)
C7—N2—C1—S1176.86 (17)C9—N2—C7—C5179.4 (2)
C9—N2—C1—S13.9 (3)C1—N2—C7—C8177.8 (2)
Cu1—S1—C1—N1111.48 (19)C9—N2—C7—C83.0 (4)
Cu1—S1—C1—N271.7 (2)C1—N2—C9—C11116.7 (2)
C1—N1—C2—C3132.1 (2)C7—N2—C9—C1162.3 (3)
C5—N1—C2—C349.4 (3)C1—N2—C9—C10115.6 (3)
C1—N1—C2—C4100.6 (2)C7—N2—C9—C1065.3 (3)
C5—N1—C2—C477.8 (3)
Symmetry code: (i) x+1, y, z+3/2.
references
References top

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Griffith, E. A. H., Spofford, W. A. III & Amma, E. L. (1978). Inorg. Chem. 17, 1913–1917.

Kuhn, N., Fawzi, R., Kratz, T., Steimann, M. & Henkel, G. (1996). Phosphorus Sulfur Silicon, 108, 107–119.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.