organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(6-methyl­pyridin-2-yl)-1H-imidazol-3-ium hexa­fluoro­phosphate

aDepartment of Chemistry, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea, bCenter for Smart Supramolecules, Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea, cDepartment of Material Science & Engineering, Kunsan National University, Jeonbuk 573-701, Republic of Korea, dDepartment of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Republic of Korea, and eDepartment of Chemistry, Kunsan National University, Kunsan, Chonbuk 573-701, Republic of Korea
*Correspondence e-mail: dhl@jbnu.ac.kr, parkg@kunsan.ac.kr

(Received 25 February 2013; accepted 13 March 2013; online 16 March 2013)

In the title salt, C17H19N4+·PF6, the two pyridine rings of the cation are inclined to one another by 15.89 (8)°, and inclined to the imidazole ring by 65.05 (10) and 64.07 (10)°. In the crystal, the cations and anions are linked via a series of C—H⋯N and C—H⋯F hydrogen bonds, forming two-dimensional networks lying parallel to (001).

Related literature

For the isolation of an N-heterocyclic carbene, see: Arduengo et al. (1991[Arduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]). For related structures, see: Huang et al. (2011[Huang, K., Du, B.-X. & Liu, C.-L. (2011). Acta Cryst. E67, o2062.]); Grieco et al. (2011[Grieco, G., Blacque, O. & Berke, H. (2011). Acta Cryst. E67, o2066-o2067.]); Kim et al. (2009[Kim, G. Y., Park, S.-K., Lee, D.-H. & Park, G. (2009). Acta Cryst. E65, o637.]). For applications of N-heterocyclic carbenes in catalytic processes, see: Enders et al. (1996[Enders, D., Gielen, H., Raabe, G., Runsink, J. & Teles, J. H. (1996). Chem. Ber. 129, 1483-1488.]); Frenzel et al. (1999[Frenzel, U., Weskamp, T., Kohl, F. J., Schattenmann, W. C., Nuyken, O. & Herrmann, W. A. (1999). J. Organomet. Chem. 586, 263-265.]); Scholl et al. (1999[Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953-956.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N4+·PF6

  • Mr = 424.33

  • Triclinic, [P \overline 1]

  • a = 6.3839 (3) Å

  • b = 12.0353 (5) Å

  • c = 12.8006 (5) Å

  • α = 108.039 (2)°

  • β = 96.091 (2)°

  • γ = 100.593 (2)°

  • V = 905.12 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.16 × 0.07 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.986

  • 19206 measured reflections

  • 3700 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.133

  • S = 0.97

  • 3700 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F3i 0.95 2.45 3.263 (2) 144
C7—H7A⋯N2ii 0.99 2.59 3.567 (2) 170
C7—H7B⋯F6iii 0.99 2.28 3.264 (2) 172
C10—H10⋯F2iv 0.95 2.53 3.373 (2) 148
C11—H11B⋯F4iv 0.99 2.44 3.355 (2) 154
C13—H13⋯F4iv 0.95 2.34 3.193 (2) 149
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x, y, z+1; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N,N'-Disubstituted imidazolium salts are of importance because stable and isolable N-heterocyclic carbenes (NHCs) can be easily prepared by deprotonation of the imidazolium salts with a strong base. N-Heterocyclic carbenes (NHCs) have been a topic of extensive research due to their practical applications in many catalytic processes, e.g., Pd–catalysed Heck–, Suzuki–coupling and Ru-based Grubbs catalyses (Frenzel et al., 1999; Enders et al., 1996; Scholl et al., 1999). We previously synthesized an N,N'-disubstituted imidazolium salt, 1,3-bis[(6-methyl-2-pyridinyl)methyl]imidazolium bromide, and reported its crystal structure (Kim et al., 2009)). The title compound was obtained by the anion exchange of the C17H19N4+ Br- with NH4PF6. Here we report the crystal structure of the title compound,1,3-bis[(6-methyl-2-pyridinyl)methyl]imidazolium hexafluorophosphate (Fig. 1).

The asymmetric unit of the title compound consists the C17H9N4 cation and PF6 anion. Each of two 6–methylpyridine rings is rotated out of the imidazole plane, with dihedral angle of N1/C2–C6 of 55.83 (9)° and N4/C12–C16 of 11.32 (9)°. The molecular packing is stabilized by four different intermolecular C—H···F hydrogen bonds in the structure. (Table 1 & Fig. 2).

Related literature top

For the isolation of an N-heterocyclic carbene, see: Arduengo et al. (1991). For related structures, see: Huang et al. (2011); Grieco et al. (2011); Kim et al. (2009). For applications of N-heterocyclic carbenes in catalytic processes, see: Enders et al. (1996); Frenzel et al. (1999); Scholl et al. (1999).

Experimental top

Synthesis of 1,3-Bis[(6-methylpyridin-2-yl)-1H-imidazolium hexafluorophosphate: A mixture of 1,3-Bis[(6-methylpyridin-2-yl)-1H-imidazolium bromide (Kim et al., 2009). (2.16 g, 6.01 x 10–3 mol) and NH4PF6 (0.980 g, 6.01 x 10–3 mol) were dissolved in acetonitrile (35 ml) and the reaction mixture was stirred at room temperature for 19 h. After the solution was filtered the solvent were removed by high-vacuum rotary evaporation. The filtrate was dried under the reduced pressure to afford a brown solid in 95% yield. Single crystals were obtained by Et2O diffusion into a CHCl3 solution of the compound.

Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz): δ8.95 (s, H, CH), 7.62 (t, 2H, J =7.8 Hz, CH), 7.47 (d, 2H, J = 2 Hz, CH), 7.31 (s, 2H, CH), 7.28(d, 2H J = 10 Hz, CH), 7.14 (d, 2H, J = 7.8 Hz, CH), 5.35 (s, 4H, CH2), 2.50 (s, 6H, CH3). 13 C NMR (CDCl3, 100 MHz): δ159.0 (s, C), 150.9 (s, C), 137.9 (s, CH), 136.1 (s, CH), 123.7 (s, CH), 122.4 (s, CH), 120.5 (s, CH), 54.5 (s, CH2), 24.4 (s, CH3).

Refinement top

Hydrogen atoms were treated as riding on their parent carbon atoms, with Uiso(H) = 1.2 to .5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···F interactions (dotted lines) in the title compound. [Symmetry code: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1]
1,3-Bis(6-methylpyridin-2-yl)-1H-imidazol-3-ium hexafluorophosphate top
Crystal data top
C17H19N4+·PF6Z = 2
Mr = 424.33F(000) = 436
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3839 (3) ÅCell parameters from 3700 reflections
b = 12.0353 (5) Åθ = 1.7–26.5°
c = 12.8006 (5) ŵ = 0.22 mm1
α = 108.039 (2)°T = 100 K
β = 96.091 (2)°Block, colorless
γ = 100.593 (2)°0.16 × 0.07 × 0.07 mm
V = 905.12 (7) Å3
Data collection top
Bruker APEXII
diffractometer
2898 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.5°, θmin = 1.7°
θ/2πhi scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1515
Tmin = 0.965, Tmax = 0.986l = 1616
19206 measured reflections4 standard reflections every 10 min
3700 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3700 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C17H19N4+·PF6γ = 100.593 (2)°
Mr = 424.33V = 905.12 (7) Å3
Triclinic, P1Z = 2
a = 6.3839 (3) ÅMo Kα radiation
b = 12.0353 (5) ŵ = 0.22 mm1
c = 12.8006 (5) ÅT = 100 K
α = 108.039 (2)°0.16 × 0.07 × 0.07 mm
β = 96.091 (2)°
Data collection top
Bruker APEXII
diffractometer
2898 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.032
Tmin = 0.965, Tmax = 0.9864 standard reflections every 10 min
19206 measured reflections intensity decay: 0.0%
3700 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.97Δρmax = 0.35 e Å3
3700 reflectionsΔρmin = 0.45 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.02678 (7)0.17116 (4)0.22243 (4)0.02100 (17)
F10.20955 (18)0.16206 (10)0.25487 (10)0.0319 (3)
F20.26436 (17)0.18066 (10)0.18965 (10)0.0307 (3)
F30.09571 (18)0.30854 (9)0.30069 (11)0.0335 (3)
F40.1109 (2)0.13509 (11)0.32678 (10)0.0383 (3)
F50.0381 (2)0.03350 (11)0.14681 (12)0.0517 (4)
F60.05468 (19)0.21073 (14)0.12030 (11)0.0472 (4)
N10.4837 (2)0.09220 (12)0.78766 (12)0.0161 (3)
N20.2781 (2)0.42854 (12)0.85867 (12)0.0172 (3)
N30.5463 (2)0.18196 (13)0.59095 (12)0.0178 (3)
N40.3855 (2)0.21935 (12)0.92229 (12)0.0159 (3)
C10.3009 (3)0.54548 (17)0.73429 (16)0.0246 (4)
H1A0.30750.63150.76690.037*
H1B0.23190.51670.65570.037*
H1C0.44780.53190.73970.037*
C20.1717 (3)0.47883 (15)0.79610 (14)0.0181 (4)
C30.0512 (3)0.46979 (15)0.78953 (15)0.0201 (4)
H30.12300.50750.74620.025 (5)*
C40.1665 (3)0.40628 (16)0.84576 (16)0.0218 (4)
H40.31810.39930.84160.027 (5)*
C50.0567 (3)0.35243 (15)0.90892 (15)0.0205 (4)
H50.13200.30670.94770.023 (5)*
C60.1643 (3)0.36706 (15)0.91398 (14)0.0173 (4)
C70.2937 (3)0.31832 (16)0.98693 (14)0.0199 (4)
H7A0.41320.38411.03710.032 (6)*
H7B0.19980.28881.03400.023 (5)*
C80.3746 (3)0.17802 (15)0.81261 (14)0.0162 (4)
H80.30080.20540.76040.017 (5)*
C90.5053 (3)0.15701 (16)0.96936 (15)0.0194 (4)
H90.53820.16781.04650.033 (6)*
C100.5668 (3)0.07800 (15)0.88527 (15)0.0189 (4)
H100.65170.02270.89200.030 (5)*
C110.5118 (3)0.02583 (15)0.67421 (14)0.0187 (4)
H11A0.36800.01040.62590.028 (5)*
H11B0.58270.04010.67670.043 (7)*
C120.6464 (3)0.10626 (15)0.62463 (14)0.0164 (4)
C130.8589 (3)0.10113 (16)0.61417 (15)0.0198 (4)
H130.92500.04750.63960.021 (5)*
C140.9729 (3)0.17597 (16)0.56576 (15)0.0210 (4)
H141.11850.17430.55730.020 (5)*
C150.8716 (3)0.25257 (16)0.53018 (15)0.0199 (4)
H150.94600.30380.49600.022 (5)*
C160.6582 (3)0.25440 (15)0.54479 (14)0.0185 (4)
C170.5434 (3)0.33675 (18)0.50650 (18)0.0277 (4)
H17A0.51980.31130.42480.042*
H17B0.63180.41900.53780.042*
H17C0.40350.33370.53190.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0187 (3)0.0230 (3)0.0248 (3)0.0041 (2)0.0065 (2)0.0125 (2)
F10.0232 (6)0.0308 (6)0.0450 (7)0.0050 (5)0.0158 (5)0.0147 (5)
F20.0196 (6)0.0401 (7)0.0371 (7)0.0072 (5)0.0100 (5)0.0176 (5)
F30.0274 (6)0.0206 (6)0.0519 (8)0.0073 (5)0.0026 (5)0.0117 (5)
F40.0493 (8)0.0459 (8)0.0417 (8)0.0283 (6)0.0193 (6)0.0317 (6)
F50.0393 (8)0.0334 (8)0.0601 (10)0.0049 (6)0.0220 (7)0.0123 (6)
F60.0257 (7)0.0908 (11)0.0386 (8)0.0116 (7)0.0034 (6)0.0427 (8)
N10.0154 (7)0.0146 (7)0.0194 (8)0.0032 (6)0.0042 (6)0.0073 (6)
N20.0157 (8)0.0177 (7)0.0187 (8)0.0043 (6)0.0038 (6)0.0062 (6)
N30.0169 (8)0.0183 (8)0.0181 (8)0.0037 (6)0.0024 (6)0.0062 (6)
N40.0135 (7)0.0172 (7)0.0188 (7)0.0036 (6)0.0030 (6)0.0086 (6)
C10.0240 (10)0.0272 (10)0.0275 (10)0.0082 (8)0.0058 (8)0.0142 (8)
C20.0203 (9)0.0157 (8)0.0171 (9)0.0050 (7)0.0031 (7)0.0035 (7)
C30.0178 (9)0.0170 (9)0.0239 (9)0.0054 (7)0.0004 (7)0.0047 (7)
C40.0139 (9)0.0185 (9)0.0292 (10)0.0027 (7)0.0031 (7)0.0036 (8)
C50.0192 (9)0.0164 (9)0.0249 (10)0.0027 (7)0.0070 (7)0.0052 (7)
C60.0185 (9)0.0151 (8)0.0182 (9)0.0049 (7)0.0044 (7)0.0041 (7)
C70.0225 (10)0.0211 (9)0.0177 (9)0.0076 (7)0.0061 (7)0.0066 (7)
C80.0133 (8)0.0170 (8)0.0190 (9)0.0024 (7)0.0016 (7)0.0081 (7)
C90.0172 (9)0.0235 (9)0.0207 (9)0.0045 (7)0.0021 (7)0.0124 (7)
C100.0158 (9)0.0203 (9)0.0246 (10)0.0046 (7)0.0032 (7)0.0130 (8)
C110.0193 (9)0.0177 (9)0.0197 (9)0.0062 (7)0.0064 (7)0.0048 (7)
C120.0169 (9)0.0158 (8)0.0141 (8)0.0041 (7)0.0007 (7)0.0025 (7)
C130.0172 (9)0.0211 (9)0.0213 (9)0.0054 (7)0.0021 (7)0.0075 (7)
C140.0147 (9)0.0239 (9)0.0229 (10)0.0047 (7)0.0037 (7)0.0055 (8)
C150.0190 (9)0.0220 (9)0.0178 (9)0.0013 (7)0.0052 (7)0.0067 (7)
C160.0188 (9)0.0204 (9)0.0151 (9)0.0040 (7)0.0024 (7)0.0051 (7)
C170.0272 (11)0.0284 (10)0.0345 (11)0.0087 (8)0.0067 (9)0.0186 (9)
Geometric parameters (Å, º) top
P1—F51.5883 (13)C4—H40.9500
P1—F61.5933 (12)C5—C61.381 (2)
P1—F31.5951 (12)C5—H50.9500
P1—F41.5980 (12)C6—C71.501 (2)
P1—F11.6003 (12)C7—H7A0.9900
P1—F21.6095 (12)C7—H7B0.9900
N1—C81.327 (2)C8—H80.9500
N1—C101.377 (2)C9—C101.345 (3)
N1—C111.473 (2)C9—H90.9500
N2—C21.343 (2)C10—H100.9500
N2—C61.346 (2)C11—C121.506 (3)
N3—C161.341 (2)C11—H11A0.9900
N3—C121.350 (2)C11—H11B0.9900
N4—C81.326 (2)C12—C131.388 (2)
N4—C91.380 (2)C13—C141.388 (3)
N4—C71.482 (2)C13—H130.9500
C1—C21.496 (3)C14—C151.376 (2)
C1—H1A0.9800C14—H140.9500
C1—H1B0.9800C15—C161.398 (2)
C1—H1C0.9800C15—H150.9500
C2—C31.399 (2)C16—C171.501 (2)
C3—C41.375 (3)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.391 (2)C17—H17C0.9800
F5—P1—F691.57 (8)C5—C6—C7120.87 (16)
F5—P1—F3178.51 (7)N4—C7—C6112.82 (14)
F6—P1—F389.86 (7)N4—C7—H7A109.0
F5—P1—F489.92 (8)C6—C7—H7A109.0
F6—P1—F4178.50 (8)N4—C7—H7B109.0
F3—P1—F488.65 (7)C6—C7—H7B109.0
F5—P1—F190.45 (7)H7A—C7—H7B107.8
F6—P1—F189.57 (6)N4—C8—N1108.81 (14)
F3—P1—F189.98 (6)N4—C8—H8125.6
F4—P1—F190.59 (7)N1—C8—H8125.6
F5—P1—F289.65 (7)C10—C9—N4106.99 (15)
F6—P1—F290.28 (6)C10—C9—H9126.5
F3—P1—F289.92 (6)N4—C9—H9126.5
F4—P1—F289.57 (6)C9—C10—N1107.26 (15)
F1—P1—F2179.82 (6)C9—C10—H10126.4
C8—N1—C10108.43 (15)N1—C10—H10126.4
C8—N1—C11124.97 (14)N1—C11—C12111.69 (14)
C10—N1—C11126.59 (14)N1—C11—H11A109.3
C2—N2—C6118.40 (15)C12—C11—H11A109.3
C16—N3—C12118.01 (15)N1—C11—H11B109.3
C8—N4—C9108.50 (14)C12—C11—H11B109.3
C8—N4—C7127.20 (14)H11A—C11—H11B107.9
C9—N4—C7124.26 (15)N3—C12—C13122.89 (16)
C2—C1—H1A109.5N3—C12—C11115.65 (15)
C2—C1—H1B109.5C13—C12—C11121.46 (15)
H1A—C1—H1B109.5C14—C13—C12118.66 (16)
C2—C1—H1C109.5C14—C13—H13120.7
H1A—C1—H1C109.5C12—C13—H13120.7
H1B—C1—H1C109.5C15—C14—C13118.86 (17)
N2—C2—C3121.23 (17)C15—C14—H14120.6
N2—C2—C1117.52 (16)C13—C14—H14120.6
C3—C2—C1121.25 (16)C14—C15—C16119.50 (17)
C4—C3—C2120.01 (17)C14—C15—H15120.2
C4—C3—H3120.0C16—C15—H15120.2
C2—C3—H3120.0N3—C16—C15122.06 (16)
C3—C4—C5118.67 (17)N3—C16—C17117.27 (16)
C3—C4—H4120.7C15—C16—C17120.66 (16)
C5—C4—H4120.7C16—C17—H17A109.5
C6—C5—C4118.44 (17)C16—C17—H17B109.5
C6—C5—H5120.8H17A—C17—H17B109.5
C4—C5—H5120.8C16—C17—H17C109.5
N2—C6—C5123.21 (16)H17A—C17—H17C109.5
N2—C6—C7115.87 (15)H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F3i0.952.453.263 (2)144
C7—H7A···N2ii0.992.593.567 (2)170
C7—H7B···F6iii0.992.283.264 (2)172
C10—H10···F2iv0.952.533.373 (2)148
C11—H11B···F4iv0.992.443.355 (2)154
C13—H13···F4iv0.952.343.193 (2)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H19N4+·PF6
Mr424.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3839 (3), 12.0353 (5), 12.8006 (5)
α, β, γ (°)108.039 (2), 96.091 (2), 100.593 (2)
V3)905.12 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.16 × 0.07 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
19206, 3700, 2898
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.133, 0.97
No. of reflections3700
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.45

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F3i0.952.453.263 (2)144
C7—H7A···N2ii0.992.593.567 (2)170
C7—H7B···F6iii0.992.283.264 (2)172
C10—H10···F2iv0.952.533.373 (2)148
C11—H11B···F4iv0.992.443.355 (2)154
C13—H13···F4iv0.952.343.193 (2)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

This work was supported by the "Human Resource Development (project name: Advanced track for Si-based solar cell materials and devices, project No. 201040100660)" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government Ministry of Knowledge Economy.

References

First citationArduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationEnders, D., Gielen, H., Raabe, G., Runsink, J. & Teles, J. H. (1996). Chem. Ber. 129, 1483–1488.  CrossRef CAS Web of Science
First citationFrenzel, U., Weskamp, T., Kohl, F. J., Schattenmann, W. C., Nuyken, O. & Herrmann, W. A. (1999). J. Organomet. Chem. 586, 263–265.  Web of Science CrossRef CAS
First citationGrieco, G., Blacque, O. & Berke, H. (2011). Acta Cryst. E67, o2066–o2067.  Web of Science CSD CrossRef IUCr Journals
First citationHuang, K., Du, B.-X. & Liu, C.-L. (2011). Acta Cryst. E67, o2062.  Web of Science CSD CrossRef IUCr Journals
First citationKim, G. Y., Park, S.-K., Lee, D.-H. & Park, G. (2009). Acta Cryst. E65, o637.  Web of Science CSD CrossRef IUCr Journals
First citationScholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds