[Journal logo]

Volume 69 
Part 4 
Page o472  
April 2013  

Received 20 February 2013
Accepted 26 February 2013
Online 2 March 2013

Key indicators
Single-crystal X-ray study
T = 200 K
Mean [sigma](C-C) = 0.005 Å
R = 0.070
wR = 0.158
Data-to-parameter ratio = 13.4
Details
Open access

2-(4-Aminobenzenesulfonamido)-4,6-dimethylpyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au

In the structure of the phenolate salt of the sulfa drug sulfamethazine with 3,5-dinitrosalicylic acid, C12H15N4O2S+·C7H3N2O7-, the dihedral angle between the pyrimidine and benzene rings of the cation is 59.70 (17)°. In the crystal, cation-anion hydrogen-bonding interactions involving pyrimidine-carboxy N+-H...O and amine-carboxy N-H...O pairs give a cyclic R22(8) motif while secondary N-H...O hydrogen bonds between the aniline group and both sulfone and nitro O-atom acceptors give a two-dimensional structure extending in (001).

Related literature

For background to sulfamethazine and its co-crystals, see: O'Neil (2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed. p. 1588. Whitehouse Station, NJ: Merck & Co. Inc.]); Caira (2007[Caira, M. R. (2007). Mol. Pharm. 4, 310-316.]); Ghosh et al. (2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]). For similar structures, see: Caira (1991[Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641-648.]); Lynch et al. (2000[Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383-387.]); Smith & Wermuth (2013[Smith, G. & Wermuth, U. D. (2013). Acta Cryst. C69. Submitted.]). For structures of 3,5-dinitrosalicylic acid salts, see: Smith et al. (2003[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707-713.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N4O2S+·C7H3N2O7-

  • Mr = 506.46

  • Monoclinic, P 21 /c

  • a = 8.1691 (3) Å

  • b = 32.0736 (9) Å

  • c = 8.9869 (3) Å

  • [beta] = 112.258 (5)°

  • V = 2179.23 (15) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.22 mm-1

  • T = 200 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.918, Tmax = 0.980

  • 14977 measured reflections

  • 4264 independent reflections

  • 3645 reflections with I > \2s(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2[sigma](F2)] = 0.070

  • wR(F2) = 0.158

  • S = 1.10

  • 4264 reflections

  • 318 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.87 e Å-3

  • [Delta][rho]min = -0.51 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1A-H1A...O11 0.88 1.75 2.617 (4) 168
N2A-H2A...O12 0.78 1.95 2.729 (4) 170
O12-H12...O2 0.96 1.52 2.416 (5) 154
N41A-H41A...O51i 0.81 2.50 3.248 (5) 153
N41A-H42A...O12Aii 0.81 2.46 3.202 (4) 152
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2201 ).


Acknowledgements

The authors acknowledge financial support from the Australian Reseach Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  [CrossRef] [ISI] [details]
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641-648.  [CrossRef] [ChemPort] [ISI]
Caira, M. R. (2007). Mol. Pharm. 4, 310-316.  [CrossRef] [PubMed] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.  [CSD] [CrossRef] [ChemPort]
Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383-387.  [ISI] [CrossRef] [ChemPort]
O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed. p. 1588. Whitehouse Station, NJ: Merck & Co. Inc.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Smith, G. & Wermuth, U. D. (2013). Acta Cryst. C69. Submitted. [details]
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707-713.  [ISI] [CSD] [CrossRef] [ChemPort]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2013). E69, o472  [ doi:10.1107/S1600536813005631 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.