[Journal logo]

Volume 69 
Part 4 
Pages o518-o519  
April 2013  

Received 3 February 2013
Accepted 5 March 2013
Online 9 March 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.006 Å
R = 0.044
wR = 0.096
Data-to-parameter ratio = 15.9
Details
Open access

2-(4-Bromoanilino)-6-(4-chlorophenyl)-5-methoxycarbonyl-4-methyl-3,6-dihydropyrimidin-1-ium chloride

aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bEquipe Chimie du Solide et Matériaux, UMR 6226 Institut des Sciences, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes cedex, France
Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

In the title molecular salt, C19H18BrClN3O2+·Cl-, the dihedral angles between the pyrimidine ring and the chlorobenzene and bromobenzene rings are 72.4 (2) and 45.5 (2)°, respectively. The dihedral angle between the chlorobenzene and bromobenzene rings is 27.5 (2)°. The conformation of the molecule is stabilized by an intramolecular C-H...O interaction. In the crystal, the anion and cation are linked by an N-H...Cl hydrogen bond. Pairs of weak C-H...O and C-H...Cl hydrogen bonds form inversion dimers. Further N-H...Cl hydrogen bonds form R21(6) motifs and link the dimers into chains along [101]. Br...Cl short contacts [3.482 (2) Å] interlink the hydrogen-bonded chains along the b-axis direction.

Related literature

For a study of chloride salts of dihydropyrimidine derivatives and their anti-tubercular activity, see: Venugopala, Nayak, Pillay et al. (2012[Venugopala, K. N., Nayak, S. K., Pillay, M., Renuka, P., Coovadia, Y. M. & Odhav, B. (2012). Chem. Biol. Drug Des. 81, 219-227.]). For the crystal structures of dihydropyrimidine derivatives, see: Venugopala, Nayak & Odhav (2012[Venugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977-o2978.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BrClN3O2+·Cl-

  • Mr = 471.17

  • Monoclinic, P 21 /n

  • a = 13.2691 (15) Å

  • b = 11.0965 (12) Å

  • c = 14.9545 (17) Å

  • [beta] = 114.181 (3)°

  • V = 2008.7 (4) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.33 mm-1

  • T = 100 K

  • 0.08 × 0.05 × 0.03 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.933

  • 10242 measured reflections

  • 3919 independent reflections

  • 2511 reflections with I > 2[sigma](I)

  • Rint = 0.067

Refinement
  • R[F2 > 2[sigma](F2)] = 0.044

  • wR(F2) = 0.096

  • S = 0.95

  • 3919 reflections

  • 246 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.42 e Å-3

  • [Delta][rho]min = -0.40 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...Cl2 0.88 2.34 3.136 (3) 151
N2-H2...Cl2i 0.88 2.41 3.179 (3) 146
N3-H3...Cl2i 0.88 2.39 3.191 (3) 151
C5-H5A...O2 0.98 2.22 2.897 (5) 125
C15-H15...O2ii 0.95 2.42 3.197 (5) 139
C18-H18...Cl2iii 0.95 2.81 3.702 (4) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2621 ).


Acknowledgements

The authors thank Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Venugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977-o2978.  [CSD] [CrossRef] [ChemPort] [details]
Venugopala, K. N., Nayak, S. K., Pillay, M., Renuka, P., Coovadia, Y. M. & Odhav, B. (2012). Chem. Biol. Drug Des. 81, 219-227.  [PubMed]


Acta Cryst (2013). E69, o518-o519   [ doi:10.1107/S1600536813006296 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.