metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(1H-benzimidazol-1-yl)meth­yl]-1H-imidazole-κN3}bis­­(3,5-dicarb­­oxy­benzoato-κ2O1,O1′)nickel(II) octa­hydrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: hnzyjyy@126.com

(Received 28 January 2013; accepted 1 February 2013; online 2 March 2013)

In the title complex, [Ni(C9H5O6)2(C11H10N4)2]·8H2O, the NiII ion exhibits site symmetry 2. It has a distorted octa­hedral coordination defined by two N atoms from two symmetry-related 1-[(1H-benzimidazol-1-yl)meth­yl]-1H-imidazole ligands and four O atoms from two symmetry-related 3,5-dicarb­oxy­benzoate anions. In the crystal, the complex mol­ecules and solvent water mol­ecules are linked via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional structure. There are also a number of C—H⋯O inter­actions present.

Related literature

For background information to NiII complexes constructed from both aromatic carboxyl­ates and N-heterocyclic ligands, see: Hu et al. (2011[Hu, J.-S., Huang, L.-F., Yao, X.-Q., Qin, L., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2011). Inorg. Chem. 50, 2404-2414.]); Xu et al. (2010[Xu, J., Pan, Z.-R., Wang, T.-W., Li, Y.-Z., Guo, Z.-J., Batten, S. R. & Zheng, H.-G. (2010). CrystEngComm, 12, 612-619.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H5O6)2(C11H10N4)2]·8H2O

  • Mr = 1017.56

  • Monoclinic, C 2/c

  • a = 20.623 (4) Å

  • b = 14.626 (3) Å

  • c = 15.471 (3) Å

  • β = 104.03 (3)°

  • V = 4527.2 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.908, Tmax = 0.940

  • 16185 measured reflections

  • 4215 independent reflections

  • 3719 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.172

  • S = 1.13

  • 4215 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1W⋯O10 0.85 2.09 2.936 (7) 170
O7—H2W⋯O6ii 0.85 1.96 2.802 (4) 172
O3—H3⋯O7iii 0.82 2.04 2.782 (5) 150
N3—H3B⋯O8iv 0.86 1.95 2.780 (5) 162
O8—H3W⋯O1v 0.85 2.05 2.866 (4) 161
O8—H4W⋯O7 0.85 2.14 2.915 (5) 151
O5—H5⋯N4vi 0.82 1.77 2.586 (4) 172
O9—H5W⋯O3vii 0.85 2.28 3.133 (5) 180
O9—H6W⋯O6i 0.85 2.05 2.791 (5) 146
O10—H7W⋯O4 0.85 1.73 2.579 (7) 173
C1—H1A⋯O5vii 0.93 2.56 3.320 (4) 139
C3—H3A⋯O4v 0.93 2.46 3.078 (5) 124
C4—H4A⋯O1viii 0.97 2.55 3.479 (4) 160
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Since NiII ions are able to coordinate simultaneously to both oxygen and nitrogen containing ligands the final products can exhibit attractive structures and useful functional properties. A great number of NiII complexes containing both aromatic carboxylates and N-heterocyclic ligands have been reported (Hu et al., 2011; Xu et al., 2010). In order to further explore such compounds with possibly new structures, we selected 1-((1H-benzimidazol-1-yl)methyl)-1H-imidazole and 1,3,5-benzenetricarboxylic acid as ligands to self-assemble with Ni(NO3)2 and obtained the title complex. The crystal structure of which is reported on herein.

As shown in Fig. 1, the NiII ion is located on a two-fold rotation axis. Each NiII ion features a distorted octahedral geometry and is hexacoordinated by four O atoms from two symmetry related 1,3,5-dicarboxybenzoate anions, in which carboxylate groups coordinate to the NiII ion in the chelating mode, and by two N atoms from two symmetry related 1-((1H-benzimidazol-1-yl)methyl)- 1H-imidazole ligands, which coordinate to NiII ion in a monodentate mode. Atoms O2, O2A, O1A, N1A, and Ni1 are nearly co-planar (the mean deviation from the plane is 0.0726 (12) Å), while atom O1 and N1 are located in the apical positions.

In the crystal, a series of O—H···O, O—H···N, and N—H···O hydrogen bonds linking, solvent water to water molecules, solvent water molecules and carboxylate O atoms, carboxyl groups and benzimidazole N atoms, and benzimidazole units and solvent water molecules, consolidate the crystal packing forming a three-dimensional structure (Table 1). There are also a number of C-H···O interactions present (Table 1).

Related literature top

For background information to NiII complexes constructed from both aromatic carboxylates and N-heterocyclic ligands, see: Hu et al. (2011); Xu et al. (2010).

Experimental top

A mixture of Ni(NO3)2 (0.1 mmol), 1-((1H-benzimidazol-1-yl)methyl)-1H-imidazole (0.1 mmol), 1,3,5-benzenetricarboxylic acid (0.1 mmol) and water (10 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 373 K for 72 h, then cooled to room temperature. Green crystals were obtained from the filtrate and dried in air.

Refinement top

The C-bound H atoms were positioned geometrically and refined as riding atom: C-H = 0.93 (aromatic) Å and 0.97 (CH2) Å. The water and NH H atoms were located in difference Fourier maps. In the final cycles of refinement they were included in calculated positions and refined as riding atoms: N-H = 0.86 Å and O-H = 0.82 (OH) Å and O-H = 0.85 (H2O) Å. All H atoms were refined with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title complex, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity [symmetry code: A = -x + 1, y, -z + 1/2.].
Bis{1-[(1H-benzimidazol-1-yl)methyl]-1H-imidazole-κN3}bis(3,5-dicarboxybenzoato-κ2O1,O1')nickel(II) octahydrate top
Crystal data top
[Ni(C9H5O6)2(C11H10N4)2]·8H2OF(000) = 2120
Mr = 1017.56Dx = 1.493 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.623 (4) ÅCell parameters from 5823 reflections
b = 14.626 (3) Åθ = 1.7–27.9°
c = 15.471 (3) ŵ = 0.52 mm1
β = 104.03 (3)°T = 293 K
V = 4527.2 (16) Å3Prism, green
Z = 40.19 × 0.17 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
4215 independent reflections
Radiation source: fine-focus sealed tube3719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 28.5714 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 2424
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 1417
Tmin = 0.908, Tmax = 0.940l = 1815
16185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0894P)2 + 4.146P]
where P = (Fo2 + 2Fc2)/3
4215 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C9H5O6)2(C11H10N4)2]·8H2OV = 4527.2 (16) Å3
Mr = 1017.56Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.623 (4) ŵ = 0.52 mm1
b = 14.626 (3) ÅT = 293 K
c = 15.471 (3) Å0.19 × 0.17 × 0.12 mm
β = 104.03 (3)°
Data collection top
Rigaku Saturn
diffractometer
4215 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
3719 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.940Rint = 0.045
16185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.13Δρmax = 0.67 e Å3
4215 reflectionsΔρmin = 0.47 e Å3
314 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.500000.05398 (4)0.250000.0263 (2)
O10.44973 (11)0.17115 (16)0.15907 (16)0.0365 (8)
O20.40111 (11)0.07735 (16)0.23391 (16)0.0338 (8)
O30.15958 (15)0.0697 (2)0.1857 (2)0.0608 (13)
O40.09844 (14)0.1905 (2)0.1294 (3)0.0686 (13)
O50.20784 (14)0.46292 (18)0.0447 (2)0.0522 (10)
O60.31803 (15)0.46684 (19)0.0667 (2)0.0568 (10)
N10.51386 (13)0.03683 (19)0.35162 (18)0.0300 (9)
N20.54931 (13)0.09621 (19)0.48450 (18)0.0293 (8)
N30.65040 (14)0.2528 (2)0.61442 (19)0.0340 (9)
N40.70616 (14)0.13469 (19)0.58371 (19)0.0327 (9)
C10.55815 (16)0.0300 (2)0.4289 (2)0.0277 (10)
C20.47484 (17)0.1117 (2)0.3587 (2)0.0377 (11)
C30.49601 (18)0.1488 (3)0.4409 (2)0.0390 (12)
C40.58605 (17)0.1066 (2)0.5776 (2)0.0335 (11)
C50.64692 (16)0.1648 (2)0.5901 (2)0.0292 (10)
C60.75139 (17)0.2070 (2)0.6066 (2)0.0326 (10)
C70.81932 (18)0.2116 (3)0.6135 (2)0.0413 (11)
C80.8498 (2)0.2936 (3)0.6411 (3)0.0488 (14)
C90.8142 (2)0.3693 (3)0.6597 (3)0.0491 (14)
C100.7470 (2)0.3652 (3)0.6525 (3)0.0473 (14)
C110.71606 (17)0.2822 (2)0.6260 (2)0.0329 (11)
C120.39819 (16)0.1458 (2)0.1831 (2)0.0305 (10)
C130.33326 (16)0.1947 (2)0.1540 (2)0.0298 (10)
C140.27601 (17)0.1527 (2)0.1660 (2)0.0338 (11)
C150.21442 (16)0.1966 (2)0.1419 (2)0.0330 (11)
C160.21099 (17)0.2849 (2)0.1080 (2)0.0352 (11)
C170.26850 (17)0.3292 (2)0.0971 (2)0.0331 (11)
C180.32924 (17)0.2827 (2)0.1189 (2)0.0325 (10)
C190.15416 (19)0.1473 (3)0.1539 (3)0.0441 (14)
C200.26497 (19)0.4268 (2)0.0666 (3)0.0403 (11)
O70.07964 (17)0.0247 (2)0.2232 (2)0.0719 (11)
O80.03597 (17)0.1763 (2)0.3458 (3)0.0795 (14)
O90.5992 (2)0.5579 (3)0.5235 (3)0.107 (2)
O100.0070 (3)0.0946 (5)0.1264 (4)0.183 (3)
H1A0.591000.014800.442800.0330*
H2A0.439500.133300.314000.0450*
H30.128900.060200.209800.0730*
H3A0.478200.199400.463300.0470*
H3B0.617500.285600.621700.0410*
H4A0.556400.133100.610900.0400*
H4B0.599100.046500.602300.0400*
H50.210900.517600.056900.0630*
H7A0.843200.161800.600100.0500*
H8A0.895700.298900.647600.0580*
H9A0.836700.423800.677300.0590*
H10A0.723100.415500.664900.0570*
H14A0.278700.094300.190400.0410*
H16A0.170000.314800.092300.0420*
H18A0.367500.310800.110000.0390*
H1W0.060600.015300.198000.0860*
H2W0.113200.026300.178700.0860*
H3W0.004400.212000.341600.0950*
H4W0.041800.144100.298700.0950*
H5W0.615400.523300.567600.1280*
H6W0.632400.552200.500500.1280*
H7W0.027200.128400.131000.2200*
H8W0.036600.098900.077600.2200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0205 (3)0.0263 (4)0.0307 (4)0.00000.0033 (2)0.0000
O10.0243 (12)0.0331 (14)0.0513 (15)0.0031 (10)0.0077 (11)0.0034 (11)
O20.0270 (12)0.0347 (14)0.0377 (13)0.0067 (10)0.0042 (10)0.0067 (11)
O30.0446 (18)0.0437 (18)0.102 (3)0.0041 (13)0.0330 (17)0.0223 (16)
O40.0281 (15)0.0512 (19)0.124 (3)0.0069 (13)0.0135 (16)0.0257 (18)
O50.0395 (16)0.0236 (13)0.087 (2)0.0071 (11)0.0026 (14)0.0013 (14)
O60.0411 (17)0.0366 (16)0.091 (2)0.0024 (13)0.0129 (15)0.0155 (15)
N10.0242 (14)0.0300 (15)0.0347 (16)0.0026 (11)0.0048 (12)0.0012 (12)
N20.0243 (14)0.0289 (15)0.0332 (15)0.0024 (11)0.0039 (11)0.0034 (12)
N30.0287 (15)0.0293 (16)0.0445 (17)0.0005 (12)0.0101 (13)0.0083 (13)
N40.0280 (15)0.0285 (15)0.0395 (16)0.0000 (12)0.0044 (12)0.0006 (12)
C10.0224 (15)0.0256 (17)0.0349 (18)0.0017 (13)0.0067 (13)0.0007 (13)
C20.0286 (18)0.037 (2)0.043 (2)0.0081 (15)0.0002 (15)0.0003 (16)
C30.036 (2)0.032 (2)0.047 (2)0.0066 (15)0.0064 (16)0.0048 (16)
C40.0305 (18)0.037 (2)0.0316 (18)0.0079 (15)0.0049 (14)0.0020 (15)
C50.0297 (17)0.0279 (18)0.0280 (17)0.0025 (13)0.0029 (13)0.0005 (13)
C60.0335 (18)0.0285 (18)0.0341 (18)0.0037 (14)0.0048 (14)0.0005 (14)
C70.0310 (19)0.045 (2)0.047 (2)0.0018 (16)0.0079 (16)0.0029 (17)
C80.034 (2)0.056 (3)0.055 (2)0.0137 (18)0.0083 (17)0.003 (2)
C90.044 (2)0.040 (2)0.060 (3)0.0183 (18)0.0065 (19)0.0026 (19)
C100.045 (2)0.035 (2)0.061 (3)0.0074 (17)0.0112 (19)0.0092 (19)
C110.0298 (18)0.0283 (18)0.0387 (19)0.0059 (14)0.0044 (14)0.0016 (14)
C120.0264 (17)0.0296 (18)0.0324 (18)0.0049 (14)0.0012 (13)0.0053 (14)
C130.0272 (17)0.0275 (18)0.0325 (18)0.0050 (13)0.0030 (13)0.0008 (14)
C140.0286 (17)0.0263 (18)0.045 (2)0.0036 (14)0.0061 (15)0.0034 (15)
C150.0262 (17)0.0280 (18)0.044 (2)0.0009 (14)0.0067 (15)0.0008 (15)
C160.0262 (17)0.0310 (19)0.047 (2)0.0073 (14)0.0062 (15)0.0017 (15)
C170.0269 (17)0.0274 (18)0.042 (2)0.0052 (13)0.0023 (14)0.0004 (14)
C180.0278 (17)0.0298 (18)0.0400 (19)0.0018 (13)0.0082 (14)0.0026 (15)
C190.034 (2)0.036 (2)0.061 (3)0.0022 (16)0.0092 (17)0.0035 (18)
C200.038 (2)0.0285 (19)0.053 (2)0.0036 (15)0.0081 (17)0.0001 (16)
O70.0484 (19)0.075 (2)0.090 (2)0.0035 (17)0.0122 (17)0.0016 (19)
O80.074 (2)0.059 (2)0.125 (3)0.0071 (18)0.062 (2)0.008 (2)
O90.114 (4)0.104 (4)0.106 (3)0.019 (3)0.034 (3)0.002 (3)
O100.087 (4)0.270 (8)0.165 (5)0.095 (5)0.024 (4)0.106 (5)
Geometric parameters (Å, º) top
Ni1—O12.299 (2)N3—H3B0.8600
Ni1—O22.023 (2)C2—C31.354 (4)
Ni1—N12.025 (3)C4—C51.490 (5)
Ni1—O1i2.299 (2)C6—C111.392 (4)
Ni1—O2i2.023 (2)C6—C71.381 (5)
Ni1—N1i2.025 (3)C7—C81.373 (6)
O1—C121.264 (4)C8—C91.397 (6)
O2—C121.265 (4)C9—C101.365 (6)
O3—C191.231 (5)C10—C111.386 (5)
O4—C191.285 (5)C12—C131.488 (5)
O5—C201.260 (5)C13—C181.392 (4)
O6—C201.241 (5)C13—C141.383 (5)
O3—H30.8200C14—C151.391 (5)
O5—H50.8200C15—C161.389 (4)
O7—H1W0.8500C15—C191.487 (5)
O7—H2W0.8500C16—C171.397 (5)
O8—H3W0.8500C17—C181.393 (5)
O8—H4W0.8500C17—C201.500 (4)
O9—H5W0.8500C1—H1A0.9300
O9—H6W0.8500C2—H2A0.9300
O10—H8W0.8500C3—H3A0.9300
O10—H7W0.8500C4—H4A0.9700
N1—C11.321 (4)C4—H4B0.9700
N1—C21.379 (4)C7—H7A0.9300
N2—C41.464 (4)C8—H8A0.9300
N2—C31.377 (5)C9—H9A0.9300
N2—C11.337 (4)C10—H10A0.9300
N3—C51.338 (4)C14—H14A0.9300
N3—C111.390 (5)C16—H16A0.9300
N4—C61.398 (4)C18—H18A0.9300
N4—C51.325 (4)
O1—Ni1—O260.46 (9)C6—C11—C10121.9 (3)
O1—Ni1—N1157.24 (10)N3—C11—C10132.3 (3)
O1—Ni1—O1i83.59 (9)O1—C12—O2119.9 (3)
O1—Ni1—O2i103.95 (10)O1—C12—C13122.0 (3)
O1—Ni1—N1i93.21 (10)O2—C12—C13118.2 (3)
O2—Ni1—N198.90 (11)C12—C13—C14118.7 (3)
O1i—Ni1—O2103.95 (10)C14—C13—C18119.4 (3)
O2—Ni1—O2i160.54 (10)C12—C13—C18121.8 (3)
O2—Ni1—N1i93.84 (11)C13—C14—C15120.9 (3)
O1i—Ni1—N193.21 (10)C14—C15—C19118.6 (3)
O2i—Ni1—N193.84 (11)C16—C15—C19122.0 (3)
N1—Ni1—N1i98.01 (12)C14—C15—C16119.3 (3)
O1i—Ni1—O2i60.46 (9)C15—C16—C17120.6 (3)
O1i—Ni1—N1i157.24 (10)C16—C17—C20120.1 (3)
O2i—Ni1—N1i98.90 (11)C16—C17—C18119.0 (3)
Ni1—O1—C1283.57 (18)C18—C17—C20120.9 (3)
Ni1—O2—C1296.0 (2)C13—C18—C17120.7 (3)
C19—O3—H3109.00O3—C19—O4124.0 (4)
C20—O5—H5109.00O3—C19—C15120.0 (4)
H1W—O7—H2W91.00O4—C19—C15116.1 (4)
H3W—O8—H4W103.00O6—C20—C17118.3 (3)
H5W—O9—H6W94.00O5—C20—O6124.7 (3)
H7W—O10—H8W116.00O5—C20—C17117.0 (3)
Ni1—N1—C2127.4 (2)N2—C1—H1A125.00
Ni1—N1—C1126.1 (2)N1—C1—H1A125.00
C1—N1—C2106.1 (3)N1—C2—H2A125.00
C1—N2—C4126.1 (3)C3—C2—H2A125.00
C1—N2—C3107.9 (3)N2—C3—H3A127.00
C3—N2—C4125.8 (3)C2—C3—H3A127.00
C5—N3—C11108.5 (3)N2—C4—H4B109.00
C5—N4—C6107.5 (3)C5—C4—H4A109.00
C11—N3—H3B126.00C5—C4—H4B109.00
C5—N3—H3B126.00N2—C4—H4A109.00
N1—C1—N2110.8 (3)H4A—C4—H4B108.00
N1—C2—C3109.4 (3)C8—C7—H7A122.00
N2—C3—C2105.9 (3)C6—C7—H7A122.00
N2—C4—C5113.9 (3)C9—C8—H8A119.00
N3—C5—N4110.7 (3)C7—C8—H8A119.00
N3—C5—C4124.9 (3)C10—C9—H9A119.00
N4—C5—C4124.3 (3)C8—C9—H9A119.00
N4—C6—C7131.2 (3)C9—C10—H10A122.00
C7—C6—C11121.3 (3)C11—C10—H10A122.00
N4—C6—C11107.5 (3)C13—C14—H14A120.00
C6—C7—C8116.5 (4)C15—C14—H14A120.00
C7—C8—C9122.2 (4)C17—C16—H16A120.00
C8—C9—C10121.5 (4)C15—C16—H16A120.00
C9—C10—C11116.6 (4)C13—C18—H18A120.00
N3—C11—C6105.8 (3)C17—C18—H18A120.00
O2—Ni1—O1—C121.55 (17)C5—N4—C6—C110.7 (3)
N1—Ni1—O1—C1225.5 (3)N1—C2—C3—N20.6 (4)
O1i—Ni1—O1—C12108.47 (18)N2—C4—C5—N399.5 (4)
O2i—Ni1—O1—C12165.85 (18)N2—C4—C5—N484.7 (4)
N1i—Ni1—O1—C1294.15 (19)N4—C6—C7—C8177.7 (4)
O1—Ni1—O2—C121.55 (17)C11—C6—C7—C80.6 (5)
N1—Ni1—O2—C12168.19 (19)N4—C6—C11—N30.2 (3)
O1i—Ni1—O2—C1272.61 (19)N4—C6—C11—C10179.1 (3)
N1i—Ni1—O2—C1293.1 (2)C7—C6—C11—N3178.5 (3)
O1—Ni1—N1—C1101.9 (3)C7—C6—C11—C100.4 (5)
O1—Ni1—N1—C270.1 (4)C6—C7—C8—C91.2 (6)
O2—Ni1—N1—C1125.5 (3)C7—C8—C9—C100.9 (7)
O2—Ni1—N1—C246.5 (3)C8—C9—C10—C110.1 (6)
O1i—Ni1—N1—C120.8 (3)C9—C10—C11—N3177.8 (4)
O1i—Ni1—N1—C2151.2 (3)C9—C10—C11—C60.8 (6)
O2i—Ni1—N1—C139.8 (3)O1—C12—C13—C14166.0 (3)
O2i—Ni1—N1—C2148.3 (3)O1—C12—C13—C1816.9 (5)
N1i—Ni1—N1—C1139.4 (3)O2—C12—C13—C1414.5 (4)
N1i—Ni1—N1—C248.7 (3)O2—C12—C13—C18162.6 (3)
Ni1—O1—C12—O22.5 (3)C12—C13—C14—C15178.4 (3)
Ni1—O1—C12—C13177.0 (3)C18—C13—C14—C151.2 (5)
Ni1—O2—C12—O12.8 (3)C12—C13—C18—C17176.1 (3)
Ni1—O2—C12—C13176.7 (2)C14—C13—C18—C171.0 (5)
Ni1—N1—C1—N2173.3 (2)C13—C14—C15—C162.1 (5)
C2—N1—C1—N20.1 (4)C13—C14—C15—C19178.3 (3)
Ni1—N1—C2—C3172.8 (2)C14—C15—C16—C170.7 (5)
C1—N1—C2—C30.4 (4)C19—C15—C16—C17179.7 (3)
C3—N2—C1—N10.3 (4)C14—C15—C19—O30.9 (6)
C4—N2—C1—N1175.6 (3)C14—C15—C19—O4179.1 (4)
C1—N2—C3—C20.5 (4)C16—C15—C19—O3178.7 (4)
C4—N2—C3—C2175.9 (3)C16—C15—C19—O41.3 (6)
C1—N2—C4—C591.3 (4)C15—C16—C17—C181.4 (4)
C3—N2—C4—C594.2 (4)C15—C16—C17—C20175.7 (3)
C11—N3—C5—N40.9 (4)C16—C17—C18—C132.3 (4)
C11—N3—C5—C4175.4 (3)C20—C17—C18—C13174.8 (3)
C5—N3—C11—C60.4 (3)C16—C17—C20—O55.8 (5)
C5—N3—C11—C10178.3 (4)C16—C17—C20—O6172.5 (3)
C6—N4—C5—N31.0 (4)C18—C17—C20—O5177.2 (3)
C6—N4—C5—C4175.3 (3)C18—C17—C20—O64.5 (5)
C5—N4—C6—C7177.7 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1W···O100.852.092.936 (7)170
O7—H2W···O6ii0.851.962.802 (4)172
O3—H3···O7iii0.822.042.782 (5)150
N3—H3B···O8iv0.861.952.780 (5)162
O8—H3W···O1v0.852.052.866 (4)161
O8—H4W···O70.852.142.915 (5)151
O5—H5···N4vi0.821.772.586 (4)172
O9—H5W···O3vii0.852.283.133 (5)180
O9—H6W···O6i0.852.052.791 (5)146
O10—H7W···O40.851.732.579 (7)173
C1—H1A···O5vii0.932.563.320 (4)139
C3—H3A···O4v0.932.463.078 (5)124
C4—H4A···O2viii0.972.492.895 (4)105
C4—H4A···O1ix0.972.553.479 (4)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1, y, z+1; (ix) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H5O6)2(C11H10N4)2]·8H2O
Mr1017.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.623 (4), 14.626 (3), 15.471 (3)
β (°) 104.03 (3)
V3)4527.2 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.19 × 0.17 × 0.12
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.908, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
16185, 4215, 3719
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.172, 1.13
No. of reflections4215
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.47

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O12.299 (2)O1—C121.264 (4)
Ni1—O22.023 (2)O2—C121.265 (4)
Ni1—N12.025 (3)O3—C191.231 (5)
Ni1—O1i2.299 (2)O4—C191.285 (5)
Ni1—O2i2.023 (2)O5—C201.260 (5)
Ni1—N1i2.025 (3)O6—C201.241 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1W···O100.852.092.936 (7)170
O7—H2W···O6ii0.851.962.802 (4)172
O3—H3···O7iii0.822.042.782 (5)150
N3—H3B···O8iv0.861.952.780 (5)162
O8—H3W···O1v0.852.052.866 (4)161
O8—H4W···O70.852.142.915 (5)151
O5—H5···N4vi0.821.772.586 (4)172
O9—H5W···O3vii0.852.283.133 (5)180
O9—H6W···O6i0.852.052.791 (5)146
O10—H7W···O40.851.732.579 (7)173
C1—H1A···O5vii0.932.563.320 (4)139
C3—H3A···O4v0.932.463.078 (5)124
C4—H4A···O1viii0.972.553.479 (4)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y, z+1/2.
 

Acknowledgements

This study was supported by the Science and Technology Department of Henan Province (082102330003).

References

First citationHu, J.-S., Huang, L.-F., Yao, X.-Q., Qin, L., Li, Y.-Z., Guo, Z.-J., Zheng, H.-G. & Xue, Z.-L. (2011). Inorg. Chem. 50, 2404–2414.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Pan, Z.-R., Wang, T.-W., Li, Y.-Z., Guo, Z.-J., Batten, S. R. & Zheng, H.-G. (2010). CrystEngComm, 12, 612–619.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds