organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Bis(4-fluoro­benzo­yl)naphthalen-2,7-diyl di­methane­sulfonate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan, and bInternational Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 7 March 2013; accepted 11 March 2013; online 16 March 2013)

The mol­ecule of the title compound, C26H18F2O8S2, lies across a crystallographic twofold rotation axis. The benzene rings of the 4-fluorobenzoyl groups make dihedral angles of 78.93 (12)° with the naphthalene ring system. An intra­molecular C—H⋯π inter­action occurs. In the crystal, a number of C—H⋯O inter­actions link the mol­ecules, forming a three-dimensional structure.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the crystal structures of closely related compounds, see: Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]); Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.], 2012[Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246.]); Sasagawa et al. (2013[Sasagawa, K., Takeuchi, R., Kusakabe, T., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o444-o445.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18F2O8S2

  • Mr = 560.52

  • Monoclinic, C 2/c

  • a = 7.376 (3) Å

  • b = 16.468 (7) Å

  • c = 20.075 (9) Å

  • β = 96.123 (6)°

  • V = 2424.4 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.945, Tmax = 0.945

  • 8755 measured reflections

  • 2360 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.120

  • S = 1.03

  • 2360 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg 0.98 2.87 3.805 (4) 160
C14—H14B⋯O1i 0.98 2.45 3.399 (4) 163
C14—H14C⋯O4ii 0.98 2.46 3.304 (4) 144
C12—H12⋯O4iii 0.95 2.50 3.285 (4) 140
C4—H4⋯O1iv 0.95 2.54 3.415 (4) 153
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Under these circumstances, the authors have stimulated the X-ray crystal structural study of 1,8-diaroylated 2,7-dimethoxynaphthalene analogues exemplified by 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene [(2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone; Watanabe et al., 2010] and 2,7-dimethoxy-1,8-bis(2-naphthoyl)naphthalene {[2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone; Tsumuki et al., 2011}.

Accordingly, to the best of our knowledge, these molecules have essentially the same non-coplanar features, namely: The aroyl groups at the 1,8-positions of the naphthalene ring are bonded in an almost perpendicular fashion and oriented in opposite directions (anti-orientation), but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene ring. Recently, the authors have described the crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene analogues, in which the two aroyl groups are situated in the same direction (syn-orientation), that is, 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) and 2,7-dimethoxy-1,8-bis(4-isopropoxybenzoyl)naphthalene [{2,7-dimethoxy-8-[4-(propan-2-yloxy)benzoyl]naphthalen-1-yl}[4-(propan-2-yloxy)phenyl]methanone; Sasagawa et al., 2013].

The authors then investigated the correlation between the aroyl groups and the neighbouring groups in the spatial organization of 1,8-diaroylnaphthalenes. In the crystal structure of 1,8-bis(4-fluorobenzoyl)-2,7-diphenoxynaphthalene [(4-fluorophenyl)[8-(4-fluorobenzoyl)-2,7-diphenoxynaphthalen-1-yl]methanone; Hijikata et al., 2012], two phenoxy groups are asymmetrically situated with respect to the adjacent aroyl groups. One phenoxy group is horizontal to the aroyl group, whereas another phenoxy group leans toward the naphthalene ring. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the crystal structure of title compound is presented herein.

The molecule of the title compound lies across a crystallographic 2-fold axis, Fig. 1, so that the asymmetric unit contains one-half of the molecule. Thus, the two aroyl groups are situated in an anti orientation and twisted away from the naphthalene ring. The benzene ring of the aroyl group make a dihedral angle of 78.93 (12) ° with the naphthalene ring. The dihedral angle between the benzene rings of the aroyl groups is 21.55 (15) °. There are two intramolecular C—H···π interactions in the molecule involving one methyl H atom (H14A) of the methanesulfonyl group and the phenyl ring of the 4-fluorobenzoyl group (Fig. 1 and Table 1).

In the crystal, the ketonic carbonyl oxygen atom (O1) and the sulfonyl oxygen atom (O4) are involved in C—H···O interactions (Fig. 2 and Table 1). These interactions contribute to the stabilization of the packing and lead to the formation a three-dimensional structure (Fig. 2 and Table 1).

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the crystal structures of closely related compounds, see: Watanabe et al. (2010); Tsumuki et al. (2011); Hijikata et al. (2010, 2012); Sasagawa et al. (2013).

Experimental top

1,8-bis(4-fluorobenzoyl)-2,7-dihydroxynaphthalene (1.0 mmol, 404 mg), methanesulfonyl chloride (2.4 mmol, 487 mg), pyridine (10.0 mmol, 791 mg), and methylene chloride (2.5 ml) were placed in a 10 ml flask. The mixture was stirred at room temperature for 24 h. After the reaction, the mixture was extracted with CHCl3. The combined extracts were washed with 2 M aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from AcOEt–hexane (v/v= 2:1) [55% isolated yield; M.p. 507.4 K], giving colourless block-like crystals. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All H atoms were placed in calculated positions and treated as riding on their parent atoms: C—H = 0.95 (aromatic C—H), 0.98 (methyl) and Uiso(H) = 1.2Ueq (aromatic C, methyl C). The positions of methyl H atoms were rotationally optimized.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule, with atom labelling. showing The displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···π interactions are shown as a dashed lines (see Table 1 for details; symmetry code: (i) -x+1, y, -z+1/2).
[Figure 2] Fig. 2. A partial crystal packing diagram of title compound. The C—H···O interactions are shown as dashed lines (see Table 1 for details).
1,8-Bis(4-fluorobenzoyl)naphthalen-2,7-diyl dimethanesulfonate top
Crystal data top
C26H18F2O8S2F(000) = 1152
Mr = 560.52Dx = 1.536 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 2840 reflections
a = 7.376 (3) Åθ = 2.7–31.5°
b = 16.468 (7) ŵ = 0.29 mm1
c = 20.075 (9) ÅT = 173 K
β = 96.123 (6)°Block, colorless
V = 2424.4 (19) Å30.10 × 0.10 × 0.05 mm
Z = 4
Data collection top
Rigaku Saturn70
diffractometer
2360 independent reflections
Radiation source: rotating anode1617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 7.314 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2016
Tmin = 0.945, Tmax = 0.945l = 1724
8755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 1.1088P]
where P = (Fo2 + 2Fc2)/3
2360 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C26H18F2O8S2V = 2424.4 (19) Å3
Mr = 560.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.376 (3) ŵ = 0.29 mm1
b = 16.468 (7) ÅT = 173 K
c = 20.075 (9) Å0.10 × 0.10 × 0.05 mm
β = 96.123 (6)°
Data collection top
Rigaku Saturn70
diffractometer
2360 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1617 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.945Rint = 0.074
8755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
2360 reflectionsΔρmin = 0.33 e Å3
173 parameters
Special details top

Experimental. Spectroscopic data for the title compound:

1H NMR δ (500 MHz, DMSO-d6, 373 K): 3.05(6H, s), 7.16(4H, dd, JH—H = 8.6 Hz, JH—F = 8.6 Hz, Ar), 7.58(4H, dd, JH—H = 8.6 Hz, JH—F = 5.7 Hz, Ar), 7.78(2H, d, J = 9.2 Hz) 8.41(2H, d, J = 9.2 Hz) p.p.m.

13C NMR δ (125 MHz, DMSO-d6, 373 K): 38.27, 114.98(d, 2JC—F = 22.7 Hz), 120.49 127.19, 127.87, 130.29, 131.66(d, 3JC—F = 9.5 Hz), 132.46, 133.68(d, 4JC—F = 2.3 Hz), 145.61, 164.88(d, 1JC—F = 253.1 Hz), 191.08 p.p.m.

IR (KBr): 1673 (C=O), 1594, 1505 (Ar, naphthalene), 1354, 1169 (–SO2–) cm-1.

HRMS (m/z): [M + H]+ calcd for C26H19F2O8S2, 561.0489 found, 561.0459

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00621 (10)1.00592 (5)0.39209 (3)0.0260 (2)
F10.5336 (3)0.76896 (12)0.54084 (9)0.0563 (6)
O10.2861 (3)0.85653 (12)0.23844 (9)0.0294 (5)
O20.0714 (2)0.99090 (12)0.32145 (9)0.0256 (5)
O30.1713 (3)1.05050 (13)0.38002 (10)0.0373 (6)
O40.1377 (3)1.03864 (14)0.43763 (10)0.0374 (6)
C10.3544 (4)0.99010 (16)0.27833 (12)0.0195 (6)
C20.2189 (4)1.03558 (17)0.30114 (12)0.0223 (6)
C30.2174 (4)1.12042 (17)0.30137 (13)0.0270 (7)
H30.12091.14970.31810.032*
C40.3583 (4)1.15977 (17)0.27698 (13)0.0270 (7)
H40.36171.21740.27810.032*
C50.50001.1169 (2)0.25000.0226 (9)
C60.50001.0305 (2)0.25000.0195 (8)
C70.3417 (4)0.89907 (17)0.28618 (13)0.0219 (6)
C80.3937 (4)0.86527 (16)0.35419 (13)0.0213 (6)
C90.3690 (4)0.78286 (17)0.36579 (14)0.0304 (7)
H90.31990.74880.33010.036*
C100.4155 (5)0.75000 (19)0.42896 (15)0.0388 (8)
H100.39860.69380.43720.047*
C110.4865 (4)0.8008 (2)0.47904 (15)0.0351 (8)
C120.5127 (4)0.88178 (19)0.46988 (14)0.0299 (7)
H120.56180.91510.50600.036*
C130.4663 (4)0.91447 (17)0.40671 (13)0.0247 (6)
H130.48410.97070.39930.030*
C140.0504 (4)0.90554 (19)0.41094 (15)0.0326 (7)
H14A0.06500.87610.42040.039*
H14B0.12300.88030.37270.039*
H14C0.11820.90340.45030.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0244 (4)0.0338 (4)0.0201 (4)0.0002 (3)0.0045 (3)0.0043 (3)
F10.0860 (17)0.0496 (13)0.0301 (11)0.0009 (11)0.0096 (10)0.0191 (9)
O10.0402 (13)0.0252 (11)0.0221 (11)0.0055 (9)0.0005 (9)0.0037 (9)
O20.0245 (11)0.0340 (12)0.0192 (10)0.0037 (9)0.0057 (8)0.0036 (8)
O30.0278 (12)0.0429 (14)0.0423 (13)0.0088 (10)0.0089 (10)0.0026 (10)
O40.0337 (13)0.0553 (15)0.0230 (11)0.0083 (11)0.0018 (9)0.0107 (10)
C10.0243 (14)0.0216 (14)0.0119 (13)0.0008 (12)0.0008 (10)0.0005 (10)
C20.0225 (15)0.0302 (16)0.0147 (14)0.0001 (12)0.0039 (11)0.0012 (11)
C30.0312 (17)0.0274 (16)0.0225 (15)0.0098 (13)0.0027 (12)0.0010 (12)
C40.0344 (17)0.0197 (15)0.0256 (16)0.0048 (13)0.0027 (13)0.0013 (12)
C50.029 (2)0.019 (2)0.018 (2)0.0000.0023 (16)0.000
C60.023 (2)0.019 (2)0.0150 (19)0.0000.0042 (15)0.000
C70.0201 (15)0.0236 (15)0.0227 (15)0.0013 (12)0.0054 (11)0.0005 (12)
C80.0215 (15)0.0227 (15)0.0204 (14)0.0007 (12)0.0052 (11)0.0015 (11)
C90.0402 (19)0.0229 (16)0.0277 (17)0.0020 (14)0.0019 (14)0.0018 (12)
C100.058 (2)0.0225 (17)0.0354 (19)0.0004 (16)0.0031 (16)0.0061 (14)
C110.040 (2)0.040 (2)0.0248 (17)0.0024 (15)0.0031 (14)0.0109 (14)
C120.0302 (17)0.0371 (19)0.0215 (15)0.0033 (14)0.0021 (12)0.0007 (13)
C130.0252 (16)0.0214 (15)0.0271 (16)0.0017 (12)0.0014 (12)0.0023 (12)
C140.0346 (18)0.0398 (19)0.0246 (16)0.0004 (14)0.0076 (13)0.0011 (13)
Geometric parameters (Å, º) top
S1—O31.421 (2)C5—C61.422 (5)
S1—O41.430 (2)C6—C1i1.432 (3)
S1—O21.6040 (19)C7—C81.486 (4)
S1—C141.735 (3)C8—C131.391 (4)
F1—C111.357 (3)C8—C91.392 (4)
O1—C71.222 (3)C9—C101.388 (4)
O2—C21.409 (3)C9—H90.9500
C1—C21.366 (4)C10—C111.368 (4)
C1—C61.432 (3)C10—H100.9500
C1—C71.511 (4)C11—C121.363 (4)
C2—C31.397 (4)C12—C131.387 (4)
C3—C41.359 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.416 (3)C14—H14A0.9800
C4—H40.9500C14—H14B0.9800
C5—C4i1.416 (3)C14—H14C0.9800
O3—S1—O4118.60 (14)O1—C7—C1120.4 (2)
O3—S1—O2108.01 (12)C8—C7—C1117.0 (2)
O4—S1—O2108.22 (12)C13—C8—C9119.2 (2)
O3—S1—C14110.61 (15)C13—C8—C7121.3 (2)
O4—S1—C14111.33 (14)C9—C8—C7119.5 (2)
O2—S1—C1497.98 (12)C10—C9—C8120.6 (3)
C2—O2—S1122.32 (16)C10—C9—H9119.7
C2—C1—C6119.0 (3)C8—C9—H9119.7
C2—C1—C7116.9 (2)C11—C10—C9118.1 (3)
C6—C1—C7124.1 (2)C11—C10—H10120.9
C1—C2—C3123.8 (3)C9—C10—H10120.9
C1—C2—O2115.2 (2)F1—C11—C12118.3 (3)
C3—C2—O2121.0 (2)F1—C11—C10118.5 (3)
C4—C3—C2118.0 (3)C12—C11—C10123.2 (3)
C4—C3—H3121.0C11—C12—C13118.6 (3)
C2—C3—H3121.0C11—C12—H12120.7
C3—C4—C5121.6 (3)C13—C12—H12120.7
C3—C4—H4119.2C12—C13—C8120.3 (3)
C5—C4—H4119.2C12—C13—H13119.8
C4—C5—C4i120.2 (4)C8—C13—H13119.8
C4—C5—C6119.90 (18)S1—C14—H14A109.5
C4i—C5—C6119.90 (18)S1—C14—H14B109.5
C5—C6—C1117.70 (17)H14A—C14—H14B109.5
C5—C6—C1i117.70 (17)S1—C14—H14C109.5
C1—C6—C1i124.6 (3)H14A—C14—H14C109.5
O1—C7—C8122.5 (2)H14B—C14—H14C109.5
O3—S1—O2—C2103.7 (2)C2—C1—C6—C1i177.1 (3)
O4—S1—O2—C225.9 (2)C7—C1—C6—C1i4.16 (18)
C14—S1—O2—C2141.5 (2)C2—C1—C7—O1101.4 (3)
C6—C1—C2—C33.0 (4)C6—C1—C7—O179.9 (3)
C7—C1—C2—C3175.8 (2)C2—C1—C7—C876.7 (3)
C6—C1—C2—O2173.41 (18)C6—C1—C7—C8102.0 (3)
C7—C1—C2—O27.8 (3)O1—C7—C8—C13176.3 (3)
S1—O2—C2—C1130.4 (2)C1—C7—C8—C135.6 (4)
S1—O2—C2—C353.0 (3)O1—C7—C8—C93.9 (4)
C1—C2—C3—C40.5 (4)C1—C7—C8—C9174.2 (3)
O2—C2—C3—C4175.7 (2)C13—C8—C9—C100.2 (4)
C2—C3—C4—C52.0 (4)C7—C8—C9—C10179.6 (3)
C3—C4—C5—C4i178.0 (3)C8—C9—C10—C110.2 (5)
C3—C4—C5—C62.0 (3)C9—C10—C11—F1179.5 (3)
C4—C5—C6—C10.47 (16)C9—C10—C11—C120.3 (5)
C4i—C5—C6—C1179.53 (16)F1—C11—C12—C13179.5 (3)
C4—C5—C6—C1i179.53 (16)C10—C11—C12—C130.4 (5)
C4i—C5—C6—C1i0.47 (16)C11—C12—C13—C80.3 (4)
C2—C1—C6—C52.9 (3)C9—C8—C13—C120.3 (4)
C7—C1—C6—C5175.84 (18)C7—C8—C13—C12179.6 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg0.982.873.805 (4)160
C14—H14B···O1ii0.982.453.399 (4)163
C14—H14C···O4iii0.982.463.304 (4)144
C12—H12···O4iv0.952.503.285 (4)140
C4—H4···O1v0.952.543.415 (4)153
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y+2, z+1; (iv) x+1, y+2, z+1; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18F2O8S2
Mr560.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)7.376 (3), 16.468 (7), 20.075 (9)
β (°) 96.123 (6)
V3)2424.4 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerRigaku Saturn70
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.945, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
8755, 2360, 1617
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.120, 1.03
No. of reflections2360
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2006), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg0.982.873.805 (4)160
C14—H14B···O1i0.982.453.399 (4)163
C14—H14C···O4ii0.982.463.304 (4)144
C12—H12···O4iii0.952.503.285 (4)140
C4—H4···O1iv0.952.543.415 (4)153
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors express their gratitude to Associate Professor Hikaru Takaya and Professor Masaharu Nakamura, Institute for Chemical Research, Kyoto University, for their kind advice. This work was partially supported by the Collaborative Research Program of the Institute for Chemical Research, Kyoto University (grant No. 2012–72).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246.  CSD CrossRef IUCr Journals Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Takeuchi, R., Kusakabe, T., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o444–o445.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds