supplementary materials


wm2722 scheme

Acta Cryst. (2013). E69, m197    [ doi:10.1107/S1600536813006557 ]

catena-Poly[[[diaqua(tetramethylethylenediamine-[kappa]2N,N')nickel(II)]-[mu]-sulfato-[kappa]2O:O'] monohydrate]

G. Schmidt and K. Merzweiler

Abstract top

The title compound, {[Ni(SO4)(C6H16N2)(H2O)2]·H2O}n, contains a NiII atom that is coordinated nearly octahedrally by a chelating tetraethylenediamine (tmeda) ligand, two water molecules in a cis arrangement and two O atoms of two sulfate anions in a trans arrangement. The sulfate anions act as [mu]2-bridging ligands leading to a chain structure of alternating NiO4N2 octahedra and SO4 tetrahedra parallel to [001]. The polymeric chains are linked by O-H...O hydrogen bonds between coordinating water molecules and sulfate anions to give double strands. There is a lattice water molecule which is also involved in O-H...O hydrogen bonding between adjacent [Ni(SO4)(tmeda)(H2O)2] chains.

Comment top

The title compound, {[Ni(H2O)2(C6H16N2)(SO4)].H2O}n, (I), forms a coordination polymer which consists of an alternating arrangement of [Ni(H2O)2(tmeda)]2+ (tmeda is tetraethylenediamine) cations and SO42- anions. The coordination around nickel(II) is roughly octahedral with a chelating tmeda ligand, two water molecules in cis positions and two oxygen atoms of the SO42- anions in a trans arrangement (Fig. 1). In a polyhedral description the chain consists of corner sharing NiN2O4 octahedra and SO4 tetrahedra (Fig. 2). The observed Ni—N (2.141 (2), 2.1453 (19) Å) and Ni—O(aqua) distances (2.0639 (17), 2.084 (2) Å) agree well with the values reported for other nickel(II) complexes containing tmeda and aqua ligands, e.g. [Ni6(CO3)4(tmeda)6]Cl4.CH2Cl2 (Anderson et al., 2009) and [Ni(C4O4)(tmeda)(H2O)2].H2O (Erer et al., 2010). A related chain structure consisting of corner-sharing NiO4(H2O)2 octahedra and SO4 tetrahedra has been observed in the compound [C2N2H10][Ni(SO4)2(H2O)2] (Behera & Rao, 2006). However, in contrast to compound (I) each NiO4(H2O)2 octahedron of the chain is connected to four SO4 tetrahedra.

The crystal packing of the [Ni(H2O)2(tmeda)]SO4 chains is supported by a network of hydrogen bridges (Figs. 2 and 3). Each of the water molecules attached to nickel forms an intrachain hydrogen bond of the type R11(6) or R11(6) to a sulfate oxygen atom. The lattice water molecule, which acts as a linker between the chains, forms two hydrogen bonds of the type R11(2) to sulfate oxygen atoms and a D11(2) hydrogen bond to a coordinating water molecule. Additonally, there are hydrogen bond motifs of the type R22(12) which are formed between coordinating water molecules and sulfate oxygen atoms of neighbouring chains. As a result of these interchain hydrogen bridges, double strands are formed which propagate parallel to [001]. The arrangement of the double strands corresponds to a distorted hexagonal rod packing.

Related literature top

For crystal structures of oligo- and polymeric nickel(II) tmeda complexes, see: Anderson et al. (2009); Erer et al. (2010). For related literature on one-dimensional metal sulfates, see: Behera & Rao (2006).

Experimental top

3.7 ml (46 mmol) of pyridine were added to a solution of 2.0 g (7.6 mmol) of nickel sulfate hexahydrate in 50 ml of water. 1.2 ml (8.0 mmol) of tmeda were added and all volatile compounds removed under reduced pressure at 333 K. The resulting solid was recrystallized from water and washed with ether to obtain the title compound in a yield of 85% (2.1 g).

Refinement top

The hydrogen atoms of the tmeda ligand were positioned geometrically and were refined using a riding model with U(H) = 1.2 Ueq(C). Hydrogen atoms of the water molecules were located from difference Fourier maps and were refined with O—H distances fixed in the range of 0.83–0.84 Å and U(H) = 1.2Ueq(O).

Computing details top

Data collection: IPDS (Stoe & Cie, 1999); cell refinement: IPDS (Stoe & Cie, 1999); data reduction: IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination sphere around the nickel(II) atom in the structure of compound (I). The asymmetric unit is marked by solid lines of corresponding bonds. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: ii) x, y, z-1].
[Figure 2] Fig. 2. Polyhedral representation of the structure of compound (I). NiN2O4 octahedra are blue, SO4 tetrahedra are yellow.
[Figure 3] Fig. 3. Part of the hydrogen-bonding network (dashed lines) in the structure of compound (I). [Symmetry codes: i) x, y, -z+1; iii) -x, -y+1, z-0.5; iv) -x, -y + 1, z + 0.5.]
catena-Poly[[[diaqua(tetramethylethylenediamine-κ2N,N')nickel(II)]-µ-sulfato-κ2O:O'] monohydrate] top
Crystal data top
[Ni(SO4)(C6H16N2)(H2O)2]·H2OF(000) = 688
Mr = 325.03Dx = 1.612 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8000 reflections
a = 21.108 (4) Åθ = 2.2–25.8°
b = 9.9335 (19) ŵ = 1.63 mm1
c = 6.3879 (13) ÅT = 223 K
V = 1339.4 (5) Å3Block, green
Z = 40.48 × 0.11 × 0.11 mm
Data collection top
Stoe IPDS
diffractometer
2585 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
area detector scansθmax = 25.9°, θmin = 2.3°
Absorption correction: numerical
(IPDS; Stoe & Cie, 1999)
h = 2525
Tmin = 0.648, Tmax = 0.841k = 1212
10054 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2585 reflectionsΔρmax = 0.37 e Å3
176 parametersΔρmin = 0.31 e Å3
7 restraintsAbsolute structure: Flack (1983), 1167 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.005 (13)
Crystal data top
[Ni(SO4)(C6H16N2)(H2O)2]·H2OV = 1339.4 (5) Å3
Mr = 325.03Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.108 (4) ŵ = 1.63 mm1
b = 9.9335 (19) ÅT = 223 K
c = 6.3879 (13) Å0.48 × 0.11 × 0.11 mm
Data collection top
Stoe IPDS
diffractometer
2585 independent reflections
Absorption correction: numerical
(IPDS; Stoe & Cie, 1999)
2291 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.841Rint = 0.054
10054 measured reflectionsθmax = 25.9°
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.31 e Å3
2585 reflectionsAbsolute structure: Flack (1983), 1167 Friedel pairs
176 parametersFlack parameter: 0.005 (13)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24703 (13)0.7260 (3)0.0085 (5)0.0305 (6)
H1C0.22320.78450.08420.037*
H1B0.24240.63340.03710.037*
H1A0.29140.75110.00510.037*
C40.16332 (11)0.9525 (2)0.2039 (4)0.0224 (6)
H4B0.16371.04730.24620.027*
H4A0.16250.94890.05070.027*
C20.26524 (13)0.6637 (3)0.3636 (5)0.0329 (7)
H2C0.25060.67170.50700.039*
H2B0.30790.69960.35270.039*
H2A0.26530.56960.32290.039*
C30.22243 (11)0.8836 (3)0.2836 (5)0.0244 (6)
H3B0.25990.92790.22500.029*
H3A0.22440.89150.43640.029*
C50.05032 (14)0.9321 (3)0.1665 (5)0.0332 (7)
H5C0.01210.89230.22380.040*
H5B0.05520.90480.02160.040*
H5A0.04731.02940.17420.040*
C60.09619 (15)0.9283 (3)0.5084 (5)0.0316 (7)
H6C0.05800.88670.56260.038*
H6B0.09201.02540.51430.038*
H6A0.13220.90050.59220.038*
N10.22264 (8)0.7398 (2)0.2241 (4)0.0197 (5)
N20.10595 (9)0.8859 (2)0.2890 (3)0.0190 (5)
Ni0.125910 (11)0.67593 (3)0.25156 (6)0.01456 (8)
O10.11212 (10)0.69565 (19)0.9294 (3)0.0245 (5)
O20.13632 (9)0.6444 (2)0.5737 (3)0.0232 (5)
O30.02891 (8)0.6195 (2)0.7004 (3)0.0262 (4)
O40.10994 (9)0.46409 (19)0.8110 (3)0.0265 (4)
O50.15204 (9)0.47588 (19)0.2051 (3)0.0240 (4)
H10.1316 (12)0.424 (3)0.283 (4)0.029*
H20.1375 (14)0.463 (3)0.084 (3)0.029*
O60.03092 (8)0.6302 (2)0.2801 (3)0.0234 (4)
H30.0187 (12)0.557 (2)0.234 (6)0.028*
H40.0213 (14)0.634 (3)0.406 (3)0.028*
O70.08191 (10)0.2998 (2)0.4475 (3)0.0305 (5)
H50.0789 (16)0.343 (3)0.558 (4)0.037*
H60.0442 (10)0.309 (3)0.414 (5)0.037*
S0.09690 (2)0.60503 (5)0.75426 (13)0.01806 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0277 (15)0.0361 (17)0.0278 (15)0.0013 (12)0.0109 (12)0.0029 (14)
C40.0255 (13)0.0152 (11)0.0265 (17)0.0026 (9)0.0032 (10)0.0009 (11)
C20.0187 (13)0.0386 (18)0.0413 (17)0.0035 (12)0.0036 (12)0.0087 (16)
C30.0203 (11)0.0238 (12)0.0290 (17)0.0054 (9)0.0000 (11)0.0024 (14)
C50.0262 (14)0.0265 (15)0.0470 (18)0.0070 (12)0.0093 (12)0.0022 (14)
C60.0396 (17)0.0267 (16)0.0284 (15)0.0031 (12)0.0099 (13)0.0099 (13)
N10.0173 (9)0.0215 (10)0.0202 (13)0.0008 (7)0.0012 (10)0.0005 (11)
N20.0178 (9)0.0203 (10)0.0188 (14)0.0005 (8)0.0008 (8)0.0001 (10)
Ni0.01562 (12)0.01675 (14)0.01132 (12)0.00151 (11)0.00008 (17)0.00004 (18)
O10.0349 (11)0.0235 (12)0.0151 (10)0.0064 (8)0.0011 (9)0.0023 (9)
O20.0215 (10)0.0346 (12)0.0135 (9)0.0053 (8)0.0024 (7)0.0030 (9)
O30.0192 (8)0.0360 (10)0.0235 (11)0.0042 (7)0.0023 (7)0.0020 (8)
O40.0342 (10)0.0240 (10)0.0215 (11)0.0027 (8)0.0042 (7)0.0013 (8)
O50.0335 (10)0.0216 (10)0.0170 (11)0.0004 (8)0.0007 (7)0.0005 (8)
O60.0223 (8)0.0286 (9)0.0193 (11)0.0084 (6)0.0004 (9)0.0028 (11)
O70.0331 (11)0.0285 (12)0.0298 (11)0.0014 (9)0.0020 (9)0.0013 (10)
S0.0190 (2)0.0221 (3)0.0131 (2)0.00424 (19)0.0019 (4)0.0007 (4)
Geometric parameters (Å, º) top
C1—N11.477 (4)C6—H6C0.9700
C1—H1C0.9700C6—H6B0.9700
C1—H1B0.9700C6—H6A0.9700
C1—H1A0.9700N1—Ni2.1453 (19)
C4—N21.483 (3)N2—Ni2.141 (2)
C4—C31.511 (4)Ni—O62.0639 (17)
C4—H4B0.9800Ni—O52.084 (2)
C4—H4A0.9800Ni—O1i2.088 (2)
C2—N11.475 (4)Ni—O22.0931 (19)
C2—H2C0.9700O1—S1.471 (2)
C2—H2B0.9700O1—Niii2.088 (2)
C2—H2A0.9700O2—S1.4751 (19)
C3—N11.478 (3)O3—S1.4828 (18)
C3—H3B0.9800O4—S1.472 (2)
C3—H3A0.9800O5—H10.834 (18)
C5—N21.484 (3)O5—H20.841 (18)
C5—H5C0.9700O6—H30.825 (17)
C5—H5B0.9700O6—H40.830 (17)
C5—H5A0.9700O7—H50.832 (18)
C6—N21.477 (4)O7—H60.829 (18)
N1—C1—H1C109.5C2—N1—Ni112.29 (17)
N1—C1—H1B109.5C1—N1—Ni112.36 (18)
H1C—C1—H1B109.5C3—N1—Ni105.19 (13)
N1—C1—H1A109.5C6—N2—C4109.5 (2)
H1C—C1—H1A109.5C6—N2—C5107.6 (2)
H1B—C1—H1A109.5C4—N2—C5108.4 (2)
N2—C4—C3110.4 (2)C6—N2—Ni114.27 (17)
N2—C4—H4B109.6C4—N2—Ni103.46 (15)
C3—C4—H4B109.6C5—N2—Ni113.46 (16)
N2—C4—H4A109.6O6—Ni—O593.42 (8)
C3—C4—H4A109.6O6—Ni—O1i88.42 (8)
H4B—C4—H4A108.1O5—Ni—O1i89.20 (7)
N1—C2—H2C109.5O6—Ni—O288.97 (8)
N1—C2—H2B109.5O5—Ni—O288.25 (8)
H2C—C2—H2B109.5O1i—Ni—O2176.24 (7)
N1—C2—H2A109.5O6—Ni—N290.77 (8)
H2C—C2—H2A109.5O5—Ni—N2175.58 (8)
H2B—C2—H2A109.5O1i—Ni—N289.51 (8)
N1—C3—C4110.7 (2)O2—Ni—N293.23 (8)
N1—C3—H3B109.5O6—Ni—N1175.51 (8)
C4—C3—H3B109.5O5—Ni—N191.06 (8)
N1—C3—H3A109.5O1i—Ni—N191.40 (9)
C4—C3—H3A109.5O2—Ni—N191.41 (8)
H3B—C3—H3A108.1N2—Ni—N184.74 (8)
N2—C5—H5C109.5S—O1—Niii136.26 (12)
N2—C5—H5B109.5S—O2—Ni138.52 (11)
H5C—C5—H5B109.5Ni—O5—H1111 (2)
N2—C5—H5A109.5Ni—O5—H2100 (2)
H5C—C5—H5A109.5H1—O5—H2105 (3)
H5B—C5—H5A109.5Ni—O6—H3117.8 (19)
N2—C6—H6C109.5Ni—O6—H4108 (2)
N2—C6—H6B109.5H3—O6—H4108 (3)
H6C—C6—H6B109.5H5—O7—H695 (3)
N2—C6—H6A109.5O1—S—O4110.72 (12)
H6C—C6—H6A109.5O1—S—O2108.00 (10)
H6B—C6—H6A109.5O4—S—O2109.83 (12)
C2—N1—C1107.7 (2)O1—S—O3109.19 (12)
C2—N1—C3110.0 (2)O4—S—O3109.28 (11)
C1—N1—C3109.3 (2)O2—S—O3109.80 (11)
N2—C4—C3—N158.5 (3)C3—N1—Ni—O5171.47 (18)
C4—C3—N1—C2158.6 (2)C2—N1—Ni—O1i141.1 (2)
C4—C3—N1—C183.4 (2)C1—N1—Ni—O1i19.51 (19)
C4—C3—N1—Ni37.4 (3)C3—N1—Ni—O1i99.30 (18)
C3—C4—N2—C677.5 (3)C2—N1—Ni—O236.4 (2)
C3—C4—N2—C5165.5 (2)C1—N1—Ni—O2158.00 (19)
C3—C4—N2—Ni44.8 (2)C3—N1—Ni—O283.19 (19)
C6—N2—Ni—O679.76 (18)C2—N1—Ni—N2129.6 (2)
C4—N2—Ni—O6161.23 (16)C1—N1—Ni—N2108.89 (19)
C5—N2—Ni—O644.05 (19)C3—N1—Ni—N29.93 (18)
C6—N2—Ni—O1i168.18 (18)O6—Ni—O2—S0.8 (2)
C4—N2—Ni—O1i72.82 (15)O5—Ni—O2—S92.6 (2)
C5—N2—Ni—O1i44.37 (19)N2—Ni—O2—S91.5 (2)
C6—N2—Ni—O29.25 (18)N1—Ni—O2—S176.3 (2)
C4—N2—Ni—O2109.75 (15)Niii—O1—S—O418.4 (2)
C5—N2—Ni—O2133.06 (19)Niii—O1—S—O2138.68 (15)
C6—N2—Ni—N1100.37 (18)Niii—O1—S—O3102.0 (2)
C4—N2—Ni—N118.63 (15)Ni—O2—S—O1135.26 (17)
C5—N2—Ni—N1135.8 (2)Ni—O2—S—O4103.9 (2)
C2—N1—Ni—O551.8 (2)Ni—O2—S—O316.3 (2)
C1—N1—Ni—O569.72 (19)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2···O4i0.84 (2)1.84 (2)2.672 (2)171 (3)
O5—H1···O70.83 (2)1.93 (2)2.765 (3)176 (3)
O6—H4···O30.83 (2)1.89 (2)2.687 (3)160 (3)
O6—H3···O3iii0.83 (2)2.03 (2)2.829 (3)162 (3)
O7—H5···O40.83 (2)2.12 (2)2.899 (3)157 (3)
O7—H6···O3iii0.83 (2)2.18 (2)2.934 (3)151 (3)
Symmetry codes: (i) x, y, z1; (iii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2···O4i0.841 (18)1.839 (19)2.672 (2)171 (3)
O5—H1···O70.834 (18)1.933 (18)2.765 (3)176 (3)
O6—H4···O30.830 (17)1.89 (2)2.687 (3)160 (3)
O6—H3···O3ii0.825 (17)2.033 (18)2.829 (3)162 (3)
O7—H5···O40.832 (18)2.12 (2)2.899 (3)157 (3)
O7—H6···O3ii0.829 (18)2.18 (2)2.934 (3)151 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z1/2.
references
References top

Anderson, J. C., Blake, A. J., Moreno, R. B., Raynel, G. & van Slageren, J. (2009). Dalton Trans. pp. 9153–9156.

Behera, J. N. & Rao, C. N. R. (2006). Chem. Asian J. 1, 742–750.

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Erer, H., Yeşilel, O. Z., Dege, N. & Alpaslan, Y. B. (2010). J. Inorg. Organomet. Polym. 20, 411–415.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (1999). IPDS Program Package. Stoe & Cie, Darmstadt, Germany