[Journal logo]

Volume 69 
Part 4 
Pages m185-m186  
April 2013  

Received 15 February 2013
Accepted 26 February 2013
Online 2 March 2013

Key indicators
Single-crystal X-ray study
T = 153 K
Mean [sigma](C-C) = 0.007 Å
R = 0.036
wR = 0.078
Data-to-parameter ratio = 11.7
Details
Open access

Poly[[([mu]4-1,3,5-triamino-1,3,5-trideoxy-cis-inositol)sodium] bromide]

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, and bFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

In the structure of the title compound, {[Na(C6H15N3O3)]Br}n, the sodium cation and the bromide anion are both located on threefold rotation axes. The sodium cation is bonded to the three hydroxy groups of one 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) ligand, with the taci ligand residing around the same threefold rotation axis as the sodium ion. The coordination sphere of the sodium ion is completed by three amino groups of three neighbouring taci molecules. Hence, this type of coordination constitutes a three-dimensional open framework with channels along the c axis which are filled with the bromide counter-anions. Each bromide ion forms three symmetry-related hydrogen bonds to both the hydroxy and the amino groups of neighbouring taci ligands.

Related literature

The crystal structure of an Na-bis-taci complex has been reported by Bartholomä et al. (2010[Bartholomä, M., Gisbrecht, S., Stucky, S., Neis, C., Morgenstern, B. & Hegetschweiler, K. (2010). Chem. Eur. J. 16, 3326-3340.]). Puckering parameters were calculated according to Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a preliminary preparation and characterization of the title compound, see: Egli (1994[Egli, A. (1994). Thesis. ETH Zürich, Switzerland.]). For a general overview of the coordination chemistry of taci, see: Hegetschweiler (1999[Hegetschweiler, K. (1999). Chem. Soc. Rev. 28, 239-249.]). The crystal structure of a CuII-taci complex has been reported by Reiss et al. (1998[Reiß, G. J., Frank, W., Hegetschweiler, K. & Kuppert, D. (1998). Acta Cryst. C54, 614-616.]). For the crystal structure of a monoprotonated taci salt, see: Reiss et al. (1999[Reiß, G. J., Hegetschweiler, K. & Sander, J. (1999). Acta Cryst. C55, 123-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C6H15N3O3)]Br

  • Mr = 280.10

  • Trigonal, P 31c

  • a = 8.0491 (10) Å

  • c = 8.8953 (18) Å

  • V = 499.10 (13) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 4.15 mm-1

  • T = 153 K

  • 0.57 × 0.45 × 0.28 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2008[Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) using indexed faces Tmin = 0.101, Tmax = 0.331

  • 3954 measured reflections

  • 690 independent reflections

  • 682 reflections with I > 2[sigma](I)

  • Rint = 0.077

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2[sigma](F2)] = 0.036

  • wR(F2) = 0.078

  • S = 1.05

  • 690 reflections

  • 59 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.42 e Å-3

  • [Delta][rho]min = -0.55 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 340 Friedel pairs

  • Flack parameter: -0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1O...Br 0.82 2.46 3.278 (3) 175
N1-H2N...Bri 0.90 (1) 2.91 (3) 3.696 (4) 147 (5)
Symmetry code: (i) [y, x, z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS and XPREP (Bruker, 2008[Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2727 ).


References

Bartholomä, M., Gisbrecht, S., Stucky, S., Neis, C., Morgenstern, B. & Hegetschweiler, K. (2010). Chem. Eur. J. 16, 3326-3340.  [PubMed]
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  [CrossRef] [ChemPort] [ISI]
Egli, A. (1994). Thesis. ETH Zürich, Switzerland.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Hegetschweiler, K. (1999). Chem. Soc. Rev. 28, 239-249.  [ISI] [CrossRef] [ChemPort]
Reiß, G. J., Frank, W., Hegetschweiler, K. & Kuppert, D. (1998). Acta Cryst. C54, 614-616.  [CSD] [CrossRef] [details]
Reiß, G. J., Hegetschweiler, K. & Sander, J. (1999). Acta Cryst. C55, 123-126.  [CSD] [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2013). E69, m185-m186   [ doi:10.1107/S1600536813005618 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.