organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o598-o599

3,9-Di­methyl-2,3-di­hydro­spiro­[carb­az­ole-1,2′-[1,3]di­thio­lan]-4(9H)-one

aCelal Bayar University, Faculty of Arts and Sciences, Department of Chemistry, 45030 Muradiye, Manisa, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, cDokuz Eylül University, Faculty of Arts and Sciences, Department of Chemistry, Tınaztepe, 35160 Buca, Izmir, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 18 March 2013; accepted 21 March 2013; online 28 March 2013)

The title compound, C16H17NOS2, consists of a carbazole skeleton with methyl and dithiol­ane groups as substituents. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.02 (11)°. The cyclo­hexenone ring has a twisted conformation, while the dithiol­ane ring adopts an envelope conformation with one of the CH2 C atoms at the flap. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains nearly parallel to the c axis. These hydrogen bonds together with weak C—H⋯π inter­actions link the molecules into a three-dimensional supramolecular network.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998[Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297-1299.], 1999[Hökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114-116.], 2009[Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702-o1703.]); Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675-677.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]); Uludağ et al. (2009[Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595-o596.]). For the isolation of carbazole alkaloids such as 3-methyl­carbazole and its several oxidized derivatives from taxonomically related higher plants, see: Chakraborty (1993[Chakraborty, D. P. (1993). The Alkaloids, edited by G. A. Cordell, Vol. 44, pp. 257-364. New York: Academic Press.]); Bhattacharyya & Chakraborty (1987[Bhattacharyya, P. & Chakraborty, D. P. (1987). Progress in the Chemistry of Organic Natural Products, edited by W. Hertz, H. Grisebach, G. W. Kirby & C. Tamm, Vol. 52, pp. 159-209. Wien, New York: Springer-Verlag.]). For the use of 4-oxo-tetra­hydro­carbazole in the synthesis of anti­emetic drugs, central nervous system active drugs and NPY-1 antagonists, see: Littell & Allen (1973[Littell, R. & Allen, G. R. (1973). US Patent No. 3 740 404.]); Ping & Guoping (1997[Ping, H. & Guoping, F. (1997). Assignee: Shanghai Hualian Pharmaceutical Co., People's Republic of China, Patent No. CN 1145902.]); Fabio et al. (2006[Fabio, R. D., Giovannini, R., Bertani, B., Borriello, M., Bozzoli, A., Donati, D., Falchi, A., Ghirlanda, D., Leslie, C. P., Pecunioso, A., Rumboldt, G. & Spada, S. (2006). Bioorg. Med. Chem. Lett. 16, 1749-1752.]); Kumar et al. (2008[Kumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur, R. G. (2008). US Patent Appl. No. US 2008/0009635 A1.]). For the use of 4-oxo-tetra­hydro­carbazole derivatives in the synthesis of indole alkaloids, see: Magnus et al. (1992[Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70-78.]); Ergün et al. (2000[Ergün, Y., Bayraktar, N., Patır, S. & Okay, G. (2000). J. Heterocycl. Chem. 37, 11-14.], 2002[Ergün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem. 39, 315-317.]). For the synthesis of tetra­hydro­carbazolone-based anti­tumor active compounds and inhibitors of HIV integrase from 4-oxo-tetra­hydro­carbazoles, see: Li & Vince (2006[Li, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942-2955.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NOS2

  • Mr = 303.43

  • Orthorhombic, P b c a

  • a = 16.8163 (3) Å

  • b = 9.8407 (2) Å

  • c = 17.2913 (4) Å

  • V = 2861.44 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.47 × 0.32 × 0.29 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.901

  • 13394 measured reflections

  • 3540 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.195

  • S = 1.05

  • 3540 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.99 2.60 3.483 (5) 149
C2—H2ACg3ii 0.99 2.89 3.813 (4) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.] and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek et al., 1994; Patır et al., 1997; Hökelek et al., 1998; Hökelek et al., 1999; Hökelek & Patır, 1999). Most of the carbazole alkaloids such as 3-methylcarbazole and its several oxidized derivatives have been isolated from taxonomically related higher plants of genera Glycosmis, Clausena and Murraya (family Rutaceae) (Chakraborty, 1993; Bhattacharyya & Chakraborty, 1987). The structures of these alkaloids can vary from simple substituted carbazoles to molecules containing complex terpene moieties. Although 4-oxo-tetrahydrocarbazoles rarely occur in nature, they have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, 4-oxo-tetrahydrocarbazole was used in the syntheses of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists (Kumar et al., 2008; Fabio et al., 2006; Ping & Guoping, 1997; Littell & Allen, 1973). 4-oxo-tetrahydrocarbazole derivatives have also been used in the syntheses of indole alkaloids (Magnus et al., 1992; Ergün et al., 2000; Ergün et al., 2002). Tetrahydrocarbazolone based antitumor active compounds and inhibitors of HIV integrase were synthesized from 4-oxo-tetrahydrocarbazoles (Li & Vince, 2006). The present study was undertaken to ascertain the crystal structure of the title compound.

The molecule of the title compound, (I), (Fig. 1) consists of a carbazole skeleton with two methyl and a dithiolane groups at positions 3, N9 and 1, respectively, where the bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.017 (3) Å for atom C7] with dihedral angle of B/C = 1.02 (11)°. Ring A (C1—C4/C4a/C9a) adopts twisted conformation, while the corresponding rings adopt envelope conformations in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a] carbazol-5(3H)-one (Çaylak et al., 2007), 3,3-ethylenedithio-3,3a, 4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009) and ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (Hökelek et al., 2009). Ring A has a pseudo twofold axis running through the midpoints of C2–C3 and C4a–C9a bonds. Dithiolane ring D (S1/S2/C1/C12/C13) has a local pseudo-mirror plane running through C12 and the midpoint of the C1–S2 bond. The conformation of ring D is an envelope, with atom C12 at the flap position, 0.720 (5) Å from the mean plane through the other four atoms.

In the crystal, intermolecular weak C—H···O hydrogen bonds link the molecules into infinite chains nearly parallel to the c-axis (Table 1 and Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2009); Patır et al. (1997); Hökelek & Patır (1999); Çaylak et al. (2007); Uludağ et al. (2009). For the isolation of carbazole alkaloids such as 3-methylcarbazole and its several oxidized derivatives from taxonomically related higher plants, see: Chakraborty (1993); Bhattacharyya & Chakraborty (1987). For the use of 4-oxo-tetrahydrocarbazole in the synthesis of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists, see: Littell & Allen (1973); Ping & Guoping (1997); Fabio et al. (2006); Kumar et al. (2008). For the use of 4-oxo-tetrahydrocarbazole derivatives in the synthesis of indole alkaloids, see: Magnus et al. (1992); Ergün et al. (2000, 2002). For the synthesis of tetrahydrocarbazolone-based antitumor active compounds and inhibitors of HIV integrase from 4-oxo-tetrahydrocarbazoles, see: Li & Vince (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), a solution of 3-methyl-2,3 -dihydrospiro[carbazole-1,2'-[1,3]dithiolan]-4(9H)-one (1.50 g, 5.2 mmol) in dichloromethane (40 ml) was cooled to 273 K. Then, sodium hydroxide (1.5 ml, 50%), tetrabutylammonium hydrogen sulfate (0.10 g, 0.3 mmol) and methyl iodide (0.75 g, 5.3 mmol) were added. The mixture was stirred for 1 h at 273 K, the stirring was continued for 2 h at room temperature, and then washed with hydrochloric acid (50 ml, 10%). The organic layer was dried with anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the resulting residue was recrystallized from ethyl acetate (yield; 1.50 g, 96%, m.p. 447 K).

Refinement top

The C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms. The highest residual electron density was found 0.96 Å from C2 and the deepest hole 0.65 Å from S2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
3,9-Dimethyl-2,3-dihydrospiro[carbazole-1,2'-[1,3]dithiolan]-4(9H)-one top
Crystal data top
C16H17NOS2F(000) = 1280
Mr = 303.43Dx = 1.409 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3799 reflections
a = 16.8163 (3) Åθ = 2.7–28.2°
b = 9.8407 (2) ŵ = 0.37 mm1
c = 17.2913 (4) ÅT = 100 K
V = 2861.44 (10) Å3Block, colorless
Z = 80.47 × 0.32 × 0.29 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3540 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2222
Tmin = 0.847, Tmax = 0.901k = 1310
13394 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0845P)2 + 10.7607P]
where P = (Fo2 + 2Fc2)/3
3540 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 1.73 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
C16H17NOS2V = 2861.44 (10) Å3
Mr = 303.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.8163 (3) ŵ = 0.37 mm1
b = 9.8407 (2) ÅT = 100 K
c = 17.2913 (4) Å0.47 × 0.32 × 0.29 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2912 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.901Rint = 0.033
13394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0845P)2 + 10.7607P]
where P = (Fo2 + 2Fc2)/3
3540 reflectionsΔρmax = 1.73 e Å3
183 parametersΔρmin = 1.08 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92826 (5)0.57718 (9)0.92430 (5)0.0250 (2)
S20.76350 (5)0.48874 (9)0.95846 (6)0.0268 (2)
O10.85144 (15)0.3722 (3)0.64738 (14)0.0239 (5)
C10.8416 (2)0.4921 (3)0.88344 (19)0.0197 (6)
C20.8013 (2)0.5688 (4)0.8151 (2)0.0286 (8)
H2A0.74730.53130.80720.034*
H2B0.79550.66580.82920.034*
C30.8470 (3)0.5590 (4)0.7396 (2)0.0289 (8)
H30.90210.59350.74920.035*
C40.85370 (19)0.4092 (3)0.71536 (19)0.0191 (6)
C4A0.87029 (17)0.3169 (3)0.77841 (18)0.0148 (6)
C50.91327 (18)0.0866 (3)0.7158 (2)0.0194 (6)
H50.90660.11270.66330.023*
C5A0.89776 (17)0.1783 (3)0.77599 (19)0.0163 (6)
C60.9385 (2)0.0429 (3)0.7349 (2)0.0239 (7)
H60.94890.10660.69480.029*
C70.9491 (2)0.0818 (3)0.8121 (2)0.0256 (7)
H70.96580.17180.82340.031*
C80.9357 (2)0.0079 (3)0.8720 (2)0.0224 (7)
H80.94370.01840.92430.027*
C8A0.90996 (18)0.1386 (3)0.85310 (19)0.0170 (6)
N90.89088 (16)0.2472 (3)0.90098 (16)0.0181 (5)
C9A0.86652 (18)0.3536 (3)0.85548 (18)0.0155 (6)
C100.8955 (2)0.2417 (4)0.9851 (2)0.0235 (7)
H10A0.92190.15741.00090.035*
H10B0.84180.24451.00690.035*
H10C0.92610.31971.00410.035*
C110.8106 (2)0.6453 (4)0.6759 (2)0.0255 (7)
H11A0.84380.63980.62940.038*
H11B0.80740.74000.69320.038*
H11C0.75710.61180.66410.038*
C120.8746 (3)0.6719 (5)0.9974 (3)0.0377 (10)
H12A0.91200.70951.03600.045*
H12B0.84520.74810.97340.045*
C130.8179 (3)0.5753 (5)1.0353 (2)0.0354 (9)
H13A0.78060.62541.06920.043*
H13B0.84740.50851.06710.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0233 (4)0.0244 (4)0.0275 (5)0.0063 (3)0.0077 (3)0.0106 (3)
S20.0184 (4)0.0257 (4)0.0362 (5)0.0007 (3)0.0008 (3)0.0062 (4)
O10.0292 (12)0.0296 (13)0.0130 (12)0.0025 (10)0.0008 (10)0.0004 (9)
C10.0298 (16)0.0154 (14)0.0138 (15)0.0006 (12)0.0039 (13)0.0015 (11)
C20.0336 (18)0.0278 (18)0.0243 (19)0.0059 (15)0.0034 (15)0.0004 (14)
C30.041 (2)0.0244 (16)0.0210 (18)0.0081 (15)0.0011 (16)0.0028 (14)
C40.0193 (14)0.0248 (15)0.0133 (15)0.0020 (12)0.0002 (12)0.0016 (12)
C4A0.0144 (12)0.0158 (13)0.0142 (14)0.0020 (11)0.0003 (11)0.0005 (11)
C50.0170 (13)0.0209 (15)0.0204 (16)0.0018 (12)0.0045 (12)0.0032 (12)
C5A0.0144 (13)0.0169 (14)0.0175 (15)0.0021 (11)0.0031 (11)0.0002 (11)
C60.0209 (15)0.0196 (15)0.031 (2)0.0013 (12)0.0068 (14)0.0083 (13)
C70.0216 (15)0.0173 (14)0.038 (2)0.0013 (12)0.0063 (14)0.0014 (14)
C80.0207 (15)0.0184 (15)0.0279 (19)0.0014 (12)0.0019 (13)0.0062 (13)
C8A0.0163 (13)0.0160 (14)0.0187 (16)0.0011 (11)0.0011 (12)0.0014 (12)
N90.0226 (12)0.0173 (12)0.0143 (13)0.0013 (10)0.0000 (11)0.0017 (10)
C9A0.0175 (13)0.0155 (13)0.0134 (15)0.0011 (11)0.0034 (11)0.0012 (11)
C100.0287 (16)0.0250 (16)0.0167 (17)0.0012 (14)0.0053 (13)0.0050 (13)
C110.0318 (18)0.0264 (16)0.0184 (17)0.0040 (14)0.0038 (14)0.0076 (13)
C120.035 (2)0.042 (2)0.035 (2)0.0019 (18)0.0037 (18)0.0165 (18)
C130.034 (2)0.047 (2)0.025 (2)0.0040 (18)0.0074 (16)0.0127 (18)
Geometric parameters (Å, º) top
S1—C11.823 (3)C6—H60.9500
S1—C121.811 (4)C7—H70.9500
S2—C11.847 (4)C8—C71.379 (5)
S2—C131.824 (4)C8—H80.9500
O1—C41.231 (4)C8A—C81.396 (4)
C1—C21.558 (5)N9—C8A1.390 (4)
C1—C9A1.505 (4)N9—C9A1.372 (4)
C2—H2A0.9900N9—C101.458 (4)
C2—H2B0.9900C9A—C4A1.382 (4)
C3—C21.519 (5)C10—H10A0.9800
C3—C111.520 (5)C10—H10B0.9800
C3—H31.0000C10—H10C0.9800
C4—C31.536 (5)C11—H11A0.9800
C4A—C41.446 (4)C11—H11B0.9800
C4A—C5A1.441 (4)C11—H11C0.9800
C5—C61.383 (5)C12—C131.498 (6)
C5—H50.9500C12—H12A0.9900
C5A—C51.402 (4)C12—H12B0.9900
C5A—C8A1.405 (5)C13—H13A0.9900
C6—C71.400 (6)C13—H13B0.9900
C12—S1—C196.24 (18)C8—C7—H7119.3
C13—S2—C198.43 (17)C7—C8—C8A117.7 (3)
S1—C1—S2107.72 (17)C7—C8—H8121.2
C2—C1—S1114.8 (2)C8A—C8—H8121.2
C2—C1—S2103.4 (2)C8—C8A—C5A121.6 (3)
C9A—C1—S1108.6 (2)N9—C8A—C5A108.5 (3)
C9A—C1—S2114.0 (2)N9—C8A—C8129.9 (3)
C9A—C1—C2108.4 (3)C8A—N9—C10123.6 (3)
C1—C2—H2A108.8C9A—N9—C8A108.3 (3)
C1—C2—H2B108.8C9A—N9—C10128.0 (3)
C3—C2—C1113.6 (3)C4A—C9A—C1124.0 (3)
C3—C2—H2A108.8N9—C9A—C1126.1 (3)
C3—C2—H2B108.8N9—C9A—C4A109.9 (3)
H2A—C2—H2B107.7N9—C10—H10A109.5
C2—C3—C11112.5 (3)N9—C10—H10B109.5
C2—C3—C4109.4 (3)N9—C10—H10C109.5
C2—C3—H3107.7H10A—C10—H10B109.5
C4—C3—H3107.7H10A—C10—H10C109.5
C11—C3—C4111.6 (3)H10B—C10—H10C109.5
C11—C3—H3107.7C3—C11—H11A109.5
O1—C4—C3122.8 (3)C3—C11—H11B109.5
O1—C4—C4A122.7 (3)C3—C11—H11C109.5
C4A—C4—C3114.3 (3)H11A—C11—H11B109.5
C5A—C4A—C4129.4 (3)H11A—C11—H11C109.5
C9A—C4A—C4123.7 (3)H11B—C11—H11C109.5
C9A—C4A—C5A106.8 (3)S1—C12—H12A110.3
C5A—C5—H5120.9S1—C12—H12B110.3
C6—C5—C5A118.3 (3)C13—C12—S1107.2 (3)
C6—C5—H5120.9C13—C12—H12A110.3
C5—C5A—C4A133.7 (3)C13—C12—H12B110.3
C5—C5A—C8A119.9 (3)H12A—C12—H12B108.5
C8A—C5A—C4A106.4 (3)S2—C13—H13A110.3
C5—C6—C7121.2 (3)S2—C13—H13B110.3
C5—C6—H6119.4C12—C13—S2107.3 (3)
C7—C6—H6119.4C12—C13—H13A110.3
C6—C7—H7119.3C12—C13—H13B110.3
C8—C7—C6121.3 (3)H13A—C13—H13B108.5
C12—S1—C1—S223.5 (2)C4—C4A—C5A—C8A175.7 (3)
C12—S1—C1—C291.1 (3)C9A—C4A—C5A—C5180.0 (3)
C12—S1—C1—C9A147.4 (3)C9A—C4A—C5A—C8A0.5 (3)
C1—S1—C12—C1345.7 (3)C5A—C5—C6—C70.5 (5)
C13—S2—C1—S10.1 (2)C4A—C5A—C5—C6179.0 (3)
C13—S2—C1—C2122.0 (3)C8A—C5A—C5—C61.6 (4)
C13—S2—C1—C9A120.4 (3)C4A—C5A—C8A—N90.1 (3)
C1—S2—C13—C1230.4 (3)C4A—C5A—C8A—C8179.0 (3)
S1—C1—C2—C375.4 (4)C5—C5A—C8A—N9179.6 (3)
S2—C1—C2—C3167.6 (3)C5—C5A—C8A—C81.5 (5)
C9A—C1—C2—C346.2 (4)C5—C6—C7—C80.8 (5)
S1—C1—C9A—N967.1 (4)C8A—C8—C7—C61.0 (5)
S1—C1—C9A—C4A110.8 (3)N9—C8A—C8—C7178.8 (3)
S2—C1—C9A—N953.0 (4)C5A—C8A—C8—C70.2 (5)
S2—C1—C9A—C4A129.1 (3)C9A—N9—C8A—C5A0.4 (3)
C2—C1—C9A—N9167.6 (3)C9A—N9—C8A—C8178.4 (3)
C2—C1—C9A—C4A14.5 (4)C10—N9—C8A—C5A179.2 (3)
C4—C3—C2—C160.7 (4)C10—N9—C8A—C80.4 (5)
C11—C3—C2—C1174.7 (3)C8A—N9—C9A—C1178.9 (3)
O1—C4—C3—C2144.3 (3)C8A—N9—C9A—C4A0.7 (4)
O1—C4—C3—C1119.1 (5)C10—N9—C9A—C12.4 (5)
C4A—C4—C3—C241.2 (4)C10—N9—C9A—C4A179.5 (3)
C4A—C4—C3—C11166.4 (3)N9—C9A—C4A—C4175.7 (3)
C5A—C4A—C4—O110.0 (5)N9—C9A—C4A—C5A0.8 (3)
C5A—C4A—C4—C3164.4 (3)C1—C9A—C4A—C42.5 (5)
C9A—C4A—C4—O1174.3 (3)C1—C9A—C4A—C5A179.0 (3)
C9A—C4A—C4—C311.2 (5)S1—C12—C13—S250.0 (4)
C4—C4A—C5A—C53.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.992.603.483 (5)149
C2—H2A···Cg3ii0.992.893.813 (4)155
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H17NOS2
Mr303.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)16.8163 (3), 9.8407 (2), 17.2913 (4)
V3)2861.44 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.47 × 0.32 × 0.29
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.847, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
13394, 3540, 2912
Rint0.033
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.195, 1.05
No. of reflections3540
No. of parameters183
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0845P)2 + 10.7607P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.73, 1.08

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.992.603.483 (5)149
C2—H2A···Cg3ii0.992.893.813 (4)155
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhattacharyya, P. & Chakraborty, D. P. (1987). Progress in the Chemistry of Organic Natural Products, edited by W. Hertz, H. Grisebach, G. W. Kirby & C. Tamm, Vol. 52, pp. 159–209. Wien, New York: Springer-Verlag.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakraborty, D. P. (1993). The Alkaloids, edited by G. A. Cordell, Vol. 44, pp. 257–364. New York: Academic Press.  Google Scholar
First citationErgün, Y., Bayraktar, N., Patır, S. & Okay, G. (2000). J. Heterocycl. Chem. 37, 11–14.  Google Scholar
First citationErgün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem. 39, 315–317.  Google Scholar
First citationFabio, R. D., Giovannini, R., Bertani, B., Borriello, M., Bozzoli, A., Donati, D., Falchi, A., Ghirlanda, D., Leslie, C. P., Pecunioso, A., Rumboldt, G. & Spada, S. (2006). Bioorg. Med. Chem. Lett. 16, 1749–1752.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702–o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur, R. G. (2008). US Patent Appl. No. US 2008/0009635 A1.  Google Scholar
First citationLi, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942–2955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLittell, R. & Allen, G. R. (1973). US Patent No. 3 740 404.  Google Scholar
First citationMagnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationPing, H. & Guoping, F. (1997). Assignee: Shanghai Hualian Pharmaceutical Co., People's Republic of China, Patent No. CN 1145902.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o598-o599
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds