organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o574-o575

Piperazine-1,4-diium bis­­(2,4,5-tricarb­­oxy­benzoate) dihydrate

aDepartment of Chemistry, GITAM University, Visakhapatnam 530 045, Andhra Pradesh, India
*Correspondence e-mail: mscbabu@yahoo.com

(Received 26 January 2013; accepted 16 March 2013; online 23 March 2013)

In the title hydrated salt, C4H12N22+·2C10H5O8·2H2O, the piperazinediium cation, lying about an inversion center, adopts a chair conformation. The benzene ring of the anion makes dihedral angles of 25.17 (8)° with the carboxyl­ate group and angles of 8.50 (7), 20.07 (7) and 80.86 (8)° with the three carb­oxy­lic acid groups. In the crystal, the cations, anions and water mol­ecules are connected by O—H⋯O and N—H⋯O hydrogen bonds into double layers parallel to (110).

Related literature

For supra­molecular architectures involving benzene-1,2,4,5-tetra­carb­oxy­lic acid and its anions, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst. E62, o3287-o3289.], 2008[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o740.]); Chiwei et al. (2005[Chiwei, W., Mingcai, Y., Ming, L., Xiaoling, M. & Jutang, S. (2005). J. Wuhan Univ. Technol. 20, 38-42.]); Pasban et al. (2012[Pasban, N., Esmhosseini, M., Ahmadi, M., Mohebbi, M., Sallkhordeh, S. & Vatani, M. (2012). Z. Kristallogr. 227, 265-266.]); Pasdar et al. (2010[Pasdar, H., Majdolashrafi, M., Aghabozorg, H. & Khavasi, H. R. (2010). Acta Cryst. E66, o3043.]); Smith et al. (2008[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123-o127.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o609-o613.]); Vaidhyanathan et al. (2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.]). For proton-transfer systems, see: Aghabozorg et al. (2010[Aghabozorg, H., Mahfoozi, F., Sharif, M. A., Shokrollahi, A., Derki, S., Shamsipur, M. & Khavasi, H. R. (2010). J. Iran. Chem. Soc. 7, 727-739.]). For inter­molecular inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·2C10H5O8·2H2O

  • Mr = 630.46

  • Triclinic, [P \overline 1]

  • a = 8.2521 (2) Å

  • b = 8.4810 (2) Å

  • c = 9.6369 (2) Å

  • α = 87.117 (5)°

  • β = 89.527 (5)°

  • γ = 70.962 (4)°

  • V = 636.73 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.985

  • 11108 measured reflections

  • 2234 independent reflections

  • 2061 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.06

  • 2234 reflections

  • 224 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8 0.82 1.63 2.4225 (15) 161
O3—H3⋯O7i 0.82 1.80 2.6100 (13) 167
O6—H6⋯O2ii 0.82 1.78 2.5884 (13) 170
N1—H1A⋯O9iii 0.90 (2) 1.83 (2) 2.7283 (17) 176 (2)
N1—H1B⋯O5iv 0.90 (2) 1.94 (2) 2.7420 (16) 147 (2)
O9—H9A⋯O8v 0.86 (2) 2.14 (2) 2.9904 (18) 174 (3)
O9—H9B⋯O7 0.82 (2) 2.18 (2) 2.9799 (19) 163 (3)
Symmetry codes: (i) x, y, z-1; (ii) x+1, y-1, z; (iii) -x+1, -y, -z+1; (iv) x, y, z+1; (v) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Benzene-1,2,4,5-tetracarboxylic acid (H4btc) with its ability to donate four protons is a versatile ligand in building supramolecular architectures and proton transfer compounds with nitrogen containing organic amines such as piperazine (Aghabozorg et al., 2008; Vaidhyanathan et al., 2002) and diethylenetriamine (Pasban et al., 2012). A number of proton transfer compounds and supramolecular architectures were reported earlier with H4btc and other organic bases such as 1,10- phenanthroline (Chiwei et al., 2005) and propane-1,2-diammonium (Pasdar et al., 2010). These proton transfer compounds have the ability to absorb various metals into their crystal lattices (Aghabozorg et al., 2006) with profound applications in metal separation and storage (Aghabozorg et al., 2010; Smith et al., 2008; Smith & Wermuth, 2010).

We report here one such proton transfer compound, piperazinediium bis(benzene-1,2,4,5-tetracarboxylate) dihydrate. As shown in Fig. 1, the asymmetric unit contain one mono-deprotonated residue of benzene-1,2,4,5-tetracaboxylic acid (H3btc-), a half of diprotonated piperazine (pipz) and one water molecule. Layered 2D supramolecular structure of title compound was built by connecting H3btc-, pipz and water molecules through hydrogen bonding (Fig.2). Inter- and intramolecular hydrogen bonding was observed between H3btc- molecular species through O–H···O hydrogen bonds. Piperazinediium cations and water molecules are involved in building this supramolecular structure through N–H···O and O–H···O bonds. Besides hydrogen bonding, the weak aromatic π-π stacking interactions between aromatic rings of H3btc- molecules could contribute for further stabilization of this layered supramolecular crystal structure. As shown in Fig. 3, the π-π stacking interactions between H3btc- (intercentroid separation of 3.7954 Å) were found to be in agreement with the reported values (Janiak, 2000). The packing diagram of the title compound is shown in Fig.4.

Related literature top

For supramolecular architectures involving benzene-1,2,4,5-tetracarboxylic acid and its anions, see: Aghabozorg et al. (2006, 2008); Chiwei et al. (2005); Pasban et al. (2012); Pasdar et al. (2010); Smith et al. (2008); Smith & Wermuth (2010); Vaidhyanathan et al. (2002). For proton-transfer systems, see: Aghabozorg et al. (2010); For intermolecular interactions, see: Janiak (2000).

Experimental top

0.2974 g (1.0 mmol) of Zn(NO3)2.6H2O, 0.1270 g (0.5 mmol) of 1,2,4,5-benzenetetracarboxylic acid, 0.2583 g (3 mmol) of piperazine and 0.2 mL (4 mmol) of sulfuric acid were dissolved in 10.0 mL distilled water and heated in a stainless steel Teflon-lined autoclave at 120°C for 24 hours. The mixture was cooled to room temperature at a cooling rate of 6 °/min. Colorless cubic shaped crystals were obtained from the reaction mixture. Yield: 68% (based on H4btc). IR (KBr): 3473.27 (s), 3033.5 (w), 2548 (m), 1707 (s), 1621(s), 1475 (m), 734 (s), 596(s), 471(s).

Refinement top

Refinement on F2 against ALL reflections. The weighted R-factor wR2 and goodness of fit S were based on F2 and conventional R-factors R were based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sig(F2) was used only for calculating R factors(gt) etc. and was not relevant to the choice of reflections for refinement. R-factors based on F2 were statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007).

Figures top
[Figure 1] Fig. 1. The view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of hydrogen bonding interactions represented by dashed lines. Insent: 2D supramolecular representation along c axis.
[Figure 3] Fig. 3. π-π stacking interactions between benzene-1,2,4,5-tetracarboxylates. Cations, water molecules and hydrogen atoms are omitted for clarity.
[Figure 4] Fig. 4. Crystal packing viewed along a axis. Hydrogen atoms are omitted for clarity.
Piperazine-1,4-diium bis(2,4,5-tricarboxybenzoate) dihydrate top
Crystal data top
C4H12N22+·2C10H5O8·2H2OZ = 1
Mr = 630.46F(000) = 328
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Melting point: 560 K
a = 8.2521 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4810 (2) ÅCell parameters from 7490 reflections
c = 9.6369 (2) Åθ = 2.5–33.0°
α = 87.117 (5)°µ = 0.14 mm1
β = 89.527 (5)°T = 293 K
γ = 70.962 (4)°Block, colourless
V = 636.73 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2234 independent reflections
Radiation source: fine-focus sealed tube2061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.945, Tmax = 0.985k = 910
11108 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.2345P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2234 reflectionsΔρmax = 0.21 e Å3
224 parametersΔρmin = 0.20 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.075 (5)
Crystal data top
C4H12N22+·2C10H5O8·2H2Oγ = 70.962 (4)°
Mr = 630.46V = 636.73 (3) Å3
Triclinic, P1Z = 1
a = 8.2521 (2) ÅMo Kα radiation
b = 8.4810 (2) ŵ = 0.14 mm1
c = 9.6369 (2) ÅT = 293 K
α = 87.117 (5)°0.30 × 0.20 × 0.20 mm
β = 89.527 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2061 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.985Rint = 0.028
11108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0304 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
2234 reflectionsΔρmin = 0.20 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06597 (16)0.70913 (15)0.05612 (13)0.0202 (3)
C20.08629 (16)0.66166 (16)0.08067 (13)0.0219 (3)
H20.00980.72640.14800.026*
C30.21641 (16)0.52142 (16)0.12023 (13)0.0196 (3)
C40.32899 (16)0.42177 (15)0.01920 (13)0.0198 (3)
C50.30804 (16)0.46709 (16)0.11737 (13)0.0212 (3)
H50.38240.39950.18460.025*
C60.18074 (16)0.60918 (16)0.15847 (13)0.0200 (3)
C70.22375 (16)0.47981 (16)0.27035 (13)0.0217 (3)
C80.47247 (16)0.27185 (16)0.05880 (13)0.0217 (3)
C90.18506 (17)0.63946 (17)0.31156 (14)0.0241 (3)
C100.08355 (17)0.86608 (16)0.07812 (14)0.0244 (3)
C110.5751 (2)0.1289 (2)0.4758 (2)0.0448 (4)
H11A0.67500.16210.45550.054*
H11B0.47710.22930.48360.054*
C120.5451 (2)0.0307 (2)0.36090 (17)0.0436 (4)
N10.60207 (17)0.02802 (17)0.60844 (14)0.0371 (3)
O10.08934 (13)0.95103 (12)0.18574 (11)0.0337 (3)
H10.00390.90620.23420.051*
O20.19676 (13)0.91343 (13)0.01098 (11)0.0368 (3)
O30.29608 (14)0.56784 (13)0.34862 (10)0.0327 (3)
H30.29740.54110.42930.049*
O40.16086 (14)0.38163 (14)0.31255 (10)0.0348 (3)
O50.50699 (13)0.24168 (13)0.17891 (10)0.0337 (3)
O60.55721 (13)0.18159 (13)0.04674 (10)0.0373 (3)
H60.63410.10140.01870.056*
O70.25414 (14)0.51726 (13)0.39115 (10)0.0359 (3)
O80.12443 (14)0.78708 (13)0.35313 (10)0.0339 (3)
O90.10687 (16)0.23958 (16)0.41278 (14)0.0453 (3)
H12B0.646 (3)0.068 (3)0.352 (2)0.051 (5)*
H12A0.518 (3)0.099 (3)0.276 (2)0.061 (6)*
H1A0.700 (2)0.060 (2)0.605 (2)0.046 (5)*
H1B0.615 (3)0.092 (3)0.677 (2)0.064 (6)*
H9A0.043 (3)0.224 (4)0.479 (2)0.097 (10)*
H9B0.135 (4)0.323 (3)0.421 (3)0.106 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0199 (6)0.0181 (6)0.0217 (7)0.0048 (5)0.0028 (5)0.0015 (5)
C20.0211 (6)0.0216 (6)0.0193 (6)0.0023 (5)0.0020 (5)0.0016 (5)
C30.0203 (6)0.0203 (6)0.0177 (6)0.0061 (5)0.0017 (5)0.0012 (5)
C40.0192 (6)0.0200 (6)0.0188 (6)0.0042 (5)0.0012 (5)0.0016 (5)
C50.0216 (6)0.0216 (6)0.0172 (6)0.0029 (5)0.0011 (5)0.0006 (5)
C60.0209 (6)0.0211 (6)0.0175 (6)0.0062 (5)0.0021 (5)0.0021 (5)
C70.0194 (6)0.0222 (7)0.0192 (6)0.0010 (5)0.0010 (5)0.0009 (5)
C80.0211 (6)0.0216 (7)0.0204 (7)0.0039 (5)0.0003 (5)0.0029 (5)
C90.0229 (7)0.0286 (7)0.0200 (7)0.0067 (5)0.0033 (5)0.0047 (5)
C100.0233 (7)0.0205 (7)0.0262 (7)0.0030 (5)0.0047 (6)0.0002 (5)
C110.0417 (9)0.0311 (8)0.0642 (12)0.0163 (7)0.0010 (8)0.0049 (8)
C120.0459 (10)0.0509 (10)0.0267 (8)0.0069 (8)0.0089 (7)0.0058 (7)
N10.0346 (7)0.0356 (7)0.0356 (7)0.0016 (6)0.0049 (6)0.0169 (6)
O10.0353 (6)0.0245 (5)0.0334 (6)0.0025 (4)0.0003 (4)0.0098 (4)
O20.0298 (6)0.0326 (6)0.0350 (6)0.0084 (4)0.0040 (5)0.0059 (5)
O30.0481 (6)0.0378 (6)0.0168 (5)0.0202 (5)0.0040 (4)0.0023 (4)
O40.0428 (6)0.0422 (6)0.0262 (5)0.0221 (5)0.0022 (4)0.0100 (4)
O50.0354 (6)0.0339 (6)0.0210 (5)0.0042 (4)0.0023 (4)0.0086 (4)
O60.0347 (6)0.0350 (6)0.0230 (5)0.0147 (4)0.0001 (4)0.0012 (4)
O70.0478 (7)0.0342 (6)0.0168 (5)0.0008 (5)0.0016 (4)0.0016 (4)
O80.0418 (6)0.0303 (6)0.0258 (5)0.0049 (5)0.0001 (4)0.0127 (4)
O90.0401 (7)0.0411 (7)0.0463 (8)0.0006 (6)0.0027 (6)0.0112 (6)
Geometric parameters (Å, º) top
C1—C21.3906 (18)C10—O21.2269 (17)
C1—C61.4127 (18)C10—O11.2841 (17)
C1—C101.5138 (17)C11—N11.479 (2)
C2—C31.3851 (18)C11—C121.487 (3)
C2—H20.9300C11—H11A0.9700
C3—C41.3947 (18)C11—H11B0.9700
C3—C71.5024 (17)C12—N1i1.478 (2)
C4—C51.3833 (18)C12—H12B0.98 (2)
C4—C81.4911 (17)C12—H12A0.96 (2)
C5—C61.3885 (18)N1—C12i1.478 (2)
C5—H50.9300N1—H1A0.904 (15)
C6—C91.5129 (18)N1—H1B0.901 (16)
C7—O41.2031 (17)O1—H10.8200
C7—O31.3074 (16)O3—H30.8200
C8—O51.2096 (16)O6—H60.8200
C8—O61.3014 (16)O9—H9A0.858 (17)
C9—O71.2367 (17)O9—H9B0.824 (18)
C9—O81.2715 (17)
C2—C1—C6118.71 (11)O8—C9—C6119.92 (12)
C2—C1—C10114.30 (11)O2—C10—O1120.53 (12)
C6—C1—C10126.99 (12)O2—C10—C1118.69 (12)
C3—C2—C1122.32 (12)O1—C10—C1120.74 (12)
C3—C2—H2118.8N1—C11—C12110.21 (13)
C1—C2—H2118.8N1—C11—H11A109.6
C2—C3—C4119.08 (12)C12—C11—H11A109.6
C2—C3—C7117.76 (11)N1—C11—H11B109.6
C4—C3—C7123.09 (11)C12—C11—H11B109.6
C5—C4—C3118.88 (11)H11A—C11—H11B108.1
C5—C4—C8120.72 (11)N1i—C12—C11110.90 (13)
C3—C4—C8120.38 (11)N1i—C12—H12B107.1 (11)
C4—C5—C6122.85 (12)C11—C12—H12B109.1 (12)
C4—C5—H5118.6N1i—C12—H12A106.8 (12)
C6—C5—H5118.6C11—C12—H12A110.4 (13)
C5—C6—C1118.16 (11)H12B—C12—H12A112.5 (17)
C5—C6—C9114.29 (11)C12i—N1—C11110.89 (13)
C1—C6—C9127.54 (11)C12i—N1—H1A110.4 (12)
O4—C7—O3124.71 (12)C11—N1—H1A110.1 (12)
O4—C7—C3122.38 (12)C12i—N1—H1B109.9 (14)
O3—C7—C3112.81 (11)C11—N1—H1B108.3 (14)
O5—C8—O6124.18 (12)H1A—N1—H1B107.1 (19)
O5—C8—C4121.94 (12)C10—O1—H1109.5
O6—C8—C4113.86 (11)C7—O3—H3109.5
O7—C9—O8122.61 (12)C8—O6—H6109.5
O7—C9—C6117.42 (11)H9A—O9—H9B112 (3)
C6—C1—C2—C30.96 (19)C4—C3—C7—O481.46 (17)
C10—C1—C2—C3179.89 (12)C2—C3—C7—O380.87 (15)
C1—C2—C3—C41.5 (2)C4—C3—C7—O3102.12 (14)
C1—C2—C3—C7178.63 (12)C5—C4—C8—O5170.29 (13)
C2—C3—C4—C50.59 (19)C3—C4—C8—O57.9 (2)
C7—C3—C4—C5177.56 (12)C5—C4—C8—O68.07 (18)
C2—C3—C4—C8178.79 (11)C3—C4—C8—O6173.75 (12)
C7—C3—C4—C84.23 (19)C5—C6—C9—O724.00 (18)
C3—C4—C5—C60.9 (2)C1—C6—C9—O7157.18 (13)
C8—C4—C5—C6177.35 (12)C5—C6—C9—O8153.59 (13)
C4—C5—C6—C11.4 (2)C1—C6—C9—O825.2 (2)
C4—C5—C6—C9177.56 (12)C2—C1—C10—O218.28 (18)
C2—C1—C6—C50.46 (18)C6—C1—C10—O2160.79 (13)
C10—C1—C6—C5178.57 (12)C2—C1—C10—O1159.58 (12)
C2—C1—C6—C9178.31 (12)C6—C1—C10—O121.4 (2)
C10—C1—C6—C92.7 (2)N1—C11—C12—N1i56.82 (19)
C2—C3—C7—O495.55 (16)C12—C11—N1—C12i56.81 (19)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.821.632.4225 (15)161
O3—H3···O7ii0.821.802.6100 (13)167
O6—H6···O2iii0.821.782.5884 (13)170
N1—H1A···O9i0.90 (2)1.83 (2)2.7283 (17)176 (2)
N1—H1B···O5iv0.90 (2)1.94 (2)2.7420 (16)147 (2)
O9—H9A···O8v0.86 (2)2.14 (2)2.9904 (18)174 (3)
O9—H9B···O70.82 (2)2.18 (2)2.9799 (19)163 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x+1, y1, z; (iv) x, y, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H12N22+·2C10H5O8·2H2O
Mr630.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2521 (2), 8.4810 (2), 9.6369 (2)
α, β, γ (°)87.117 (5), 89.527 (5), 70.962 (4)
V3)636.73 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.945, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11108, 2234, 2061
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.06
No. of reflections2234
No. of parameters224
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.821.632.4225 (15)161
O3—H3···O7i0.821.802.6100 (13)167
O6—H6···O2ii0.821.782.5884 (13)170
N1—H1A···O9iii0.904 (15)1.825 (15)2.7283 (17)175.9 (18)
N1—H1B···O5iv0.901 (16)1.941 (18)2.7420 (16)147 (2)
O9—H9A···O8v0.858 (17)2.135 (18)2.9904 (18)174 (3)
O9—H9B···O70.824 (18)2.182 (19)2.9799 (19)163 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1, y1, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y+1, z+1.
 

Acknowledgements

The authors are thankful for financial support from the Department of Science and Technology through the Nanomission project (SR/S5/NM-92/2006) and are also grateful to the Sophisticated Analytical Instrumentation Facility (SAIF), IIT-Madras, Chennai, for the data collection.

References

First citationAghabozorg, H., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst. E62, o3287–o3289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Mahfoozi, F., Sharif, M. A., Shokrollahi, A., Derki, S., Shamsipur, M. & Khavasi, H. R. (2010). J. Iran. Chem. Soc. 7, 727–739.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiwei, W., Mingcai, Y., Ming, L., Xiaoling, M. & Jutang, S. (2005). J. Wuhan Univ. Technol. 20, 38–42.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPasban, N., Esmhosseini, M., Ahmadi, M., Mohebbi, M., Sallkhordeh, S. & Vatani, M. (2012). Z. Kristallogr. 227, 265–266.  CAS Google Scholar
First citationPasdar, H., Majdolashrafi, M., Aghabozorg, H. & Khavasi, H. R. (2010). Acta Cryst. E66, o3043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o609–o613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o574-o575
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds