[Journal logo]

Volume 69 
Part 4 
Pages o574-o575  
April 2013  

Received 26 January 2013
Accepted 16 March 2013
Online 23 March 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.002 Å
R = 0.030
wR = 0.085
Data-to-parameter ratio = 10.0
Details
Open access

Piperazine-1,4-diium bis(2,4,5-tricarboxybenzoate) dihydrate

aDepartment of Chemistry, GITAM University, Visakhapatnam 530 045, Andhra Pradesh, India
Correspondence e-mail: mscbabu@yahoo.com

In the title hydrated salt, C4H12N22+·2C10H5O8-·2H2O, the piperazinediium cation, lying about an inversion center, adopts a chair conformation. The benzene ring of the anion makes dihedral angles of 25.17 (8)° with the carboxylate group and angles of 8.50 (7), 20.07 (7) and 80.86 (8)° with the three carboxylic acid groups. In the crystal, the cations, anions and water molecules are connected by O-H...O and N-H...O hydrogen bonds into double layers parallel to (110).

Related literature

For supramolecular architectures involving benzene-1,2,4,5-tetracarboxylic acid and its anions, see: Aghabozorg et al. (2006[Aghabozorg, H., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst. E62, o3287-o3289.], 2008[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o740.]); Chiwei et al. (2005[Chiwei, W., Mingcai, Y., Ming, L., Xiaoling, M. & Jutang, S. (2005). J. Wuhan Univ. Technol. 20, 38-42.]); Pasban et al. (2012[Pasban, N., Esmhosseini, M., Ahmadi, M., Mohebbi, M., Sallkhordeh, S. & Vatani, M. (2012). Z. Kristallogr. 227, 265-266.]); Pasdar et al. (2010[Pasdar, H., Majdolashrafi, M., Aghabozorg, H. & Khavasi, H. R. (2010). Acta Cryst. E66, o3043.]); Smith et al. (2008[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123-o127.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o609-o613.]); Vaidhyanathan et al. (2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.]). For proton-transfer systems, see: Aghabozorg et al. (2010[Aghabozorg, H., Mahfoozi, F., Sharif, M. A., Shokrollahi, A., Derki, S., Shamsipur, M. & Khavasi, H. R. (2010). J. Iran. Chem. Soc. 7, 727-739.]). For intermolecular interactions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·2C10H5O8-·2H2O

  • Mr = 630.46

  • Triclinic, [P \overline 1]

  • a = 8.2521 (2) Å

  • b = 8.4810 (2) Å

  • c = 9.6369 (2) Å

  • [alpha] = 87.117 (5)°

  • [beta] = 89.527 (5)°

  • [gamma] = 70.962 (4)°

  • V = 636.73 (3) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 0.14 mm-1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.985

  • 11108 measured reflections

  • 2234 independent reflections

  • 2061 reflections with I > 2[sigma](I)

  • Rint = 0.028

Refinement
  • R[F2 > 2[sigma](F2)] = 0.030

  • wR(F2) = 0.085

  • S = 1.06

  • 2234 reflections

  • 224 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1...O8 0.82 1.63 2.4225 (15) 161
O3-H3...O7i 0.82 1.80 2.6100 (13) 167
O6-H6...O2ii 0.82 1.78 2.5884 (13) 170
N1-H1A...O9iii 0.90 (2) 1.83 (2) 2.7283 (17) 176 (2)
N1-H1B...O5iv 0.90 (2) 1.94 (2) 2.7420 (16) 147 (2)
O9-H9A...O8v 0.86 (2) 2.14 (2) 2.9904 (18) 174 (3)
O9-H9B...O7 0.82 (2) 2.18 (2) 2.9799 (19) 163 (3)
Symmetry codes: (i) x, y, z-1; (ii) x+1, y-1, z; (iii) -x+1, -y, -z+1; (iv) x, y, z+1; (v) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2086 ).


Acknowledgements

The authors are thankful for financial support from the Department of Science and Technology through the Nanomission project (SR/S5/NM-92/2006) and are also grateful to the Sophisticated Analytical Instrumentation Facility (SAIF), IIT-Madras, Chennai, for the data collection.

References

Aghabozorg, H., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst. E62, o3287-o3289.  [CrossRef] [details]
Aghabozorg, H., Mahfoozi, F., Sharif, M. A., Shokrollahi, A., Derki, S., Shamsipur, M. & Khavasi, H. R. (2010). J. Iran. Chem. Soc. 7, 727-739.  [CrossRef] [ChemPort]
Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o740.  [CSD] [CrossRef] [details]
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  [CrossRef] [ISI] [details]
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chiwei, W., Mingcai, Y., Ming, L., Xiaoling, M. & Jutang, S. (2005). J. Wuhan Univ. Technol. 20, 38-42.  [CrossRef]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.  [CrossRef]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Pasban, N., Esmhosseini, M., Ahmadi, M., Mohebbi, M., Sallkhordeh, S. & Vatani, M. (2012). Z. Kristallogr. 227, 265-266.  [ChemPort]
Pasdar, H., Majdolashrafi, M., Aghabozorg, H. & Khavasi, H. R. (2010). Acta Cryst. E66, o3043.  [CSD] [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Smith, G. & Wermuth, U. D. (2010). Acta Cryst. C66, o609-o613.  [CSD] [CrossRef] [details]
Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2008). Acta Cryst. C64, o123-o127.  [CSD] [CrossRef] [details]
Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.  [ISI] [CSD] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o574-o575   [ doi:10.1107/S160053681300723X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.