metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dieth­yl(μ3-2-methyl-4-oxo-4H-pyran-3-olato-κ4O3,O4:O3:O3)tris­­(μ2-2-methyl-4-oxo-4H-pyran-3-olato-κ3O3,O4:O3)trizinc toluene disolvate

aFaculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, 14 F. Joliot-Curie, Poland
*Correspondence e-mail: piotr.sobota@chem.uni.wroc.pl

(Received 20 March 2013; accepted 11 April 2013; online 20 April 2013)

The title compound, [Zn3(C2H5)2(C6H5O3)4]·2C7H8, crystallizes with one complex mol­ecule solvated by two mol­ecules of toluene in the asymmetric unit. The ZnII ions are coordinated by two terminal ethyl (Et) groups and four maltolate ligands, which act as μ3- and μ2-bridges. The metal atoms are arranged in an incomplete cubane Zn3O4 core structure, derived from one EtZnO3 tetra­hedron, one EtZnO4 bipyramid and one ZnO6 octa­hedron, sharing common corners. The structure is stabilized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For general background to zinc–maltolate complexes, see: Ahmed et al. (2000[Ahmed, S. I., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. & Laurie, S. H. (2000). Polyhedron, 19, 129-135.]); Petrus & Sobota (2012a[Petrus, R. & Sobota, P. (2012a). Organometallics, 31, 4755-4762.],b[Petrus, R. & Sobota, P. (2012b). Acta Cryst. C68, m275-m280.]). For biological activity, see: Thompson et al. (2004[Thompson, K. H., Chiles, J., Yuen, V. G., Tse, J., McNeill, J. H. & Orvig, C. (2004). J. Inorg. Biochem. 98, 683-690.], 2006[Thompson, K. H., Barta, C. A. & Orvig, C. (2006). Chem. Soc. Rev. 35, 545-556.]). For ring-opening polymerization of cyclic esters, see: Chamberlain et al. (2001[Chamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229-3238.]). For material chemistry, see: Boyle et al. (2004[Boyle, T. J., Bunge, S. D., Andrews, N. L., Matzen, L. E., Sieg, K., Rodriguez, M. A. & Headley, T. J. (2004). Chem. Mater. 16, 3279-3288.]); Kaplunov et al. (2012[Kaplunov, M. G., Nikitenko, S. N. & Krasnikova, S. S. (2012). Nanoscale Res. Lett. 7, 206-214.]). For incomplete cubane Zn3O4 core topology, see: Maxim et al. (2008[Maxim, C., Pasatoiu, T. D., Kravtsov, V. Ch., Shova, S., Muryn, C. A., Winpenny, R. E. P., Tuna, F. & Andruh, M. (2008). Inorg. Chim. Acta, 361, 3903-3911.]); Romero et al. (2010[Romero, M. J., Pedrido, R., González-Noya, A. M., Martínez-Calvo, M., Zaragoza, G. & Bermejo, M. R. (2010). Chem. Commun. 46, 5115-5117.]). For the continuous shape measure, see: Alvarez et al. (2002[Alvarez, S., Avnir, D., Llunell, M. & Pinsky, M. (2002). New J. Chem. 26, 996-1009.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3(C2H5)2(C6H5O3)4]·2C7H8

  • Mr = 938.96

  • Monoclinic, P 21 /n

  • a = 10.125 (3) Å

  • b = 11.949 (4) Å

  • c = 34.653 (6) Å

  • β = 90.20 (2)°

  • V = 4192 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 100 K

  • 0.43 × 0.37 × 0.09 mm

Data collection
  • KUMA KM4 CCD κ-geometry diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.580, Tmax = 0.883

  • 45983 measured reflections

  • 9131 independent reflections

  • 7444 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.04

  • 9131 reflections

  • 521 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—C1 1.971 (2)
Zn1—O3 2.0293 (14)
Zn1—O11 2.0077 (15)
Zn1—O17 2.0675 (14)
Zn2—C9 1.981 (2)
Zn2—O11 2.0943 (14)
Zn2—O12 2.1109 (15)
Zn2—O23 2.0193 (14)
Zn2—O3 2.6270 (15)
Zn3—O3 2.1060 (14)
Zn3—O4 2.0802 (15)
Zn3—O23 2.0759 (15)
Zn3—O24 2.0729 (14)
Zn3—O17 2.1439 (15)
Zn3—O18 2.1081 (15)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 denote the centroids of the C29–C34 and C36–C41 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.95 2.53 3.477 (3) 172
C14—H14⋯O24ii 0.95 2.39 3.286 (3) 156
C20—H20⋯O17iii 0.95 2.40 3.332 (3) 166
C26—H26⋯O18iv 0.95 2.33 3.167 (3) 146
C28—H28BCg2v 0.98 2.72 3.411 (3) 128
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years alkoxo zinc complexes have attracted much attention for their use as initiators for the ring-opening polymerization of cyclic esters (Chamberlain et al., 2001), metallotherapeutic drugs (Thompson et al., 2006), and precursors of electroluminescent (Kaplunov et al., 2012) and ceramic materials (Boyle et al., 2004). In this contects have also been investigated so for related zinc–maltolate complexes (Ahmed et al., 2000; Thompson et al., 2004; Petrus & Sobota, 2012a, 2012b).

We describe here the solid state structure of zinc complex [Zn3(Et)2(MalO)4] (where MalOH = maltol), solvated by two molecules of toluene, (Fig. 1). The title zinc alkoxide has been previously reported in the monosolvated form [Zn3(Et)2(MalO)4].C7H8, which crystallizes in the triclinic space group P1 (Petrus & Sobota, 2012a). The molecular structure comprises a trimer, containing incomplete cubane Zn3O4 core structure with different coordination modes around each zinc atoms (Maxim et al., 2008; Romero et al., 2010). The Zn1 ion is coordinated in a tetrahedral manner to one ethyl and two maltolate ligands in a monodentate coordination mode through atoms O11 and O17. The Zn2 atom is five-coordinated with EtZnO4 enviroment, comprise with zinc bonded ethyl group and three alkoxy (O3, O11, O23) and one carbonyl (O12) oxygen atoms from three maltolate ligands. The geometry around the Zn2 centre can be considered as distored trigonal bipyramid, as confirmed by the metric shape parameters S(Oh) = 3.59 (Alvarez et al., 2002). The Zn3 ion is six-coordinated by three maltolate ligands in a bidentate chelating mode through the O atoms of alkoxy and carbonyl groups, forming five-membered Zn3/O3/C3/C4/O4, Zn3/O17/C17/C18/O18 and Zn3/O23/C23/C24/O24 chelate rings. The first of these metallacycles is twisted about the Zn3—O3 bond, while the rest have a conformation based on an envelope with the Zn3 atom as the envelope flap. The unsual elongated Zn2—O3 bond, i.e. by about 0.56 Å from the average Zn—O bond lengths within the Zn2O2 diamond cores, results in a high deformation of the central core geometry (Table 1). The title complex shows weak intermolecular C—H···O interactions between the trinuclear units and adjacent molecules to link them into extended chain (Table 2). The trinuclear cluster is also stabilized by C—H···π interactions with solvent molecules (Table 2).

Related literature top

For general background to zinc–maltolate complexes, see: Ahmed et al. (2000); Petrus & Sobota (2012a,b). For biological activity, see: Thompson et al. (2004, 2006). For ring-opening polymerization of cyclic esters, see: Chamberlain et al. (2001). For material chemistry, see: Boyle et al. (2004); Kaplunov et al. (2012). For incomplete cubane Zn3O4 core topology, see: Maxim et al. (2008); Romero et al. (2010). For the continuous shape measure, see: Alvarez et al. (2002).

Experimental top

The title compound was prepared by a procedure similar to that described in our earlier work (Petrus & Sobota, 2012a). Single crystals for XRD analysis were obtained from the concentrated mother liquor at room temperature. 1H NMR (C6D6, 500 MHz): δ 6.60 (4H, d, J = 5.1 Hz, CH, MalO), 6.02 (4H, d, J = 5.1 Hz, CH, MalO), 2.43 (s, 12H, CH3, MalO), 1.50 (6H, t, J = 7.9 Hz, CH3, Et), 0.61 (4H, k, J = 7.9, CH2, Et). 13C NMR (C6D6, 125 MHz): δ 178. 6 (4 C, C=O, MalO), 152.9 (4 C, CH, MalO), 152.2 - 149.9 (8 C, C—CH3, C—O, MalO), 111.5 (4 C, CH, MalO), 15.5 (4 C, CH3, MalO), 13.3 (2 C, CH3, Et), 0.1 (2 C, CH2, Et). FTIR-ATR (solid state): 2938 (w), 2921 (w), 2887 (w), 2851 (w), 1621 (m), 1614 (m), 1580 (s), 1536 (m), 1518 (s), 1457 (m), 1386 (w), 1363 (w), 1310 (w), 1287 (m), 1204 (s), 1234 (m), 1211 (m), 1191 (s), 1083 (w), 1042 (w), 984 (w), 946 (w), 852 (s), 832 (s), 763 (m), 719 (m), 708 (m), 607 (m), 591 (m), 586 (m), 546 (s), 529 (s), 510 (m), 499 (m), 484 (w), 406 (m). FTIR-ATR (toluene solution): 2940 (w), 2914 (w), 2890 (w), 2845 (w),1610 (m), 1589 (s), 1524 (m), 1495 (w), 1461 (m), 1390 (w), 1361 (w), 1281 (s), 1240 (w), 1202 (m), 1084 (w), 1040 (w), 922 (m), 852 (m), 830 (m), 762 (w), 590 (w), 544 (m), 463 (s), 440 (m), 409 (m), 401 (m).

Refinement top

Reported crystal showed weak reflections, especially at high diffraction angle, so these were omitted from the refinement for θ > 27°. All non-H atoms, were refined anisotropically. All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.95 Å for the aromatic, 0.98 Å for the methyl and 0.99 Å for the methylene with Uiso(H) = 1.5 Ueq(C) for methyl H atoms or 1.2 Ueq(C) otherwise.

Structure description top

In recent years alkoxo zinc complexes have attracted much attention for their use as initiators for the ring-opening polymerization of cyclic esters (Chamberlain et al., 2001), metallotherapeutic drugs (Thompson et al., 2006), and precursors of electroluminescent (Kaplunov et al., 2012) and ceramic materials (Boyle et al., 2004). In this contects have also been investigated so for related zinc–maltolate complexes (Ahmed et al., 2000; Thompson et al., 2004; Petrus & Sobota, 2012a, 2012b).

We describe here the solid state structure of zinc complex [Zn3(Et)2(MalO)4] (where MalOH = maltol), solvated by two molecules of toluene, (Fig. 1). The title zinc alkoxide has been previously reported in the monosolvated form [Zn3(Et)2(MalO)4].C7H8, which crystallizes in the triclinic space group P1 (Petrus & Sobota, 2012a). The molecular structure comprises a trimer, containing incomplete cubane Zn3O4 core structure with different coordination modes around each zinc atoms (Maxim et al., 2008; Romero et al., 2010). The Zn1 ion is coordinated in a tetrahedral manner to one ethyl and two maltolate ligands in a monodentate coordination mode through atoms O11 and O17. The Zn2 atom is five-coordinated with EtZnO4 enviroment, comprise with zinc bonded ethyl group and three alkoxy (O3, O11, O23) and one carbonyl (O12) oxygen atoms from three maltolate ligands. The geometry around the Zn2 centre can be considered as distored trigonal bipyramid, as confirmed by the metric shape parameters S(Oh) = 3.59 (Alvarez et al., 2002). The Zn3 ion is six-coordinated by three maltolate ligands in a bidentate chelating mode through the O atoms of alkoxy and carbonyl groups, forming five-membered Zn3/O3/C3/C4/O4, Zn3/O17/C17/C18/O18 and Zn3/O23/C23/C24/O24 chelate rings. The first of these metallacycles is twisted about the Zn3—O3 bond, while the rest have a conformation based on an envelope with the Zn3 atom as the envelope flap. The unsual elongated Zn2—O3 bond, i.e. by about 0.56 Å from the average Zn—O bond lengths within the Zn2O2 diamond cores, results in a high deformation of the central core geometry (Table 1). The title complex shows weak intermolecular C—H···O interactions between the trinuclear units and adjacent molecules to link them into extended chain (Table 2). The trinuclear cluster is also stabilized by C—H···π interactions with solvent molecules (Table 2).

For general background to zinc–maltolate complexes, see: Ahmed et al. (2000); Petrus & Sobota (2012a,b). For biological activity, see: Thompson et al. (2004, 2006). For ring-opening polymerization of cyclic esters, see: Chamberlain et al. (2001). For material chemistry, see: Boyle et al. (2004); Kaplunov et al. (2012). For incomplete cubane Zn3O4 core topology, see: Maxim et al. (2008); Romero et al. (2010). For the continuous shape measure, see: Alvarez et al. (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom-numbering scheme for (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted.
Diethyl(µ3-2-methyl-4-oxo-4H-pyran-3-olato-κ4O3,O4:O3:O3)tris(µ2-2-methyl-4-oxo-4H-pyran-3-olato-κ3O3,O4:O3)trizinc toluene disolvate top
Crystal data top
[Zn3(C2H5)2(C6H5O3)4]·2C7H8F(000) = 1936
Mr = 938.96Dx = 1.488 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21726 reflections
a = 10.125 (3) Åθ = 2.9–36.8°
b = 11.949 (4) ŵ = 1.76 mm1
c = 34.653 (6) ÅT = 100 K
β = 90.20 (2)°Plate, colourless
V = 4192 (2) Å30.43 × 0.37 × 0.09 mm
Z = 4
Data collection top
KUMA KM4 CCD κ-geometry
diffractometer
9131 independent reflections
Radiation source: fine-focus sealed tube7444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1210
Tmin = 0.580, Tmax = 0.883k = 1515
45983 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.034P)2 + 0.8469P]
where P = (Fo2 + 2Fc2)/3
9131 reflections(Δ/σ)max = 0.001
521 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn3(C2H5)2(C6H5O3)4]·2C7H8V = 4192 (2) Å3
Mr = 938.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.125 (3) ŵ = 1.76 mm1
b = 11.949 (4) ÅT = 100 K
c = 34.653 (6) Å0.43 × 0.37 × 0.09 mm
β = 90.20 (2)°
Data collection top
KUMA KM4 CCD κ-geometry
diffractometer
9131 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
7444 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.883Rint = 0.042
45983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
9131 reflectionsΔρmin = 0.32 e Å3
521 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26829 (2)0.439724 (18)0.134257 (6)0.01407 (6)
Zn20.07663 (2)0.667285 (19)0.125066 (6)0.01503 (6)
Zn30.00952 (2)0.432645 (18)0.174372 (6)0.01362 (6)
C10.3874 (2)0.32296 (17)0.11435 (6)0.0209 (4)
H1A0.42830.34940.09010.025*
H1B0.45910.30960.13330.025*
C20.3140 (2)0.21269 (18)0.10668 (7)0.0285 (5)
H2A0.28080.18250.13110.043*
H2B0.37450.15870.09490.043*
H2C0.23960.22650.08910.043*
O30.07472 (13)0.44813 (11)0.11915 (4)0.0157 (3)
C30.00764 (19)0.41008 (15)0.09213 (6)0.0152 (4)
O40.16934 (14)0.38637 (12)0.14003 (4)0.0201 (3)
C40.1390 (2)0.37953 (16)0.10493 (6)0.0179 (4)
C50.2278 (2)0.34243 (18)0.07548 (7)0.0254 (5)
H50.31580.32230.08190.030*
O60.06397 (16)0.36316 (13)0.02767 (4)0.0270 (4)
C60.1873 (2)0.33606 (19)0.03896 (7)0.0293 (5)
H60.24830.31120.01990.035*
C70.0255 (2)0.40088 (17)0.05440 (6)0.0194 (4)
C80.1551 (2)0.4300 (2)0.03700 (6)0.0262 (5)
H8A0.18740.50020.04820.039*
H8B0.14460.43890.00900.039*
H8C0.21860.37000.04230.039*
C90.0003 (2)0.71116 (18)0.07464 (6)0.0202 (4)
H9A0.01110.79300.07150.024*
H9B0.05150.67440.05400.024*
C100.1464 (2)0.68336 (18)0.06817 (7)0.0251 (5)
H10A0.15820.60200.06810.038*
H10B0.17530.71400.04330.038*
H10C0.19910.71630.08890.038*
O110.26890 (13)0.60774 (11)0.13393 (4)0.0150 (3)
C110.34341 (19)0.67853 (16)0.15465 (5)0.0146 (4)
O120.15748 (14)0.79574 (12)0.15965 (4)0.0202 (3)
C120.2768 (2)0.77899 (16)0.16820 (6)0.0165 (4)
C130.3531 (2)0.85483 (17)0.19089 (6)0.0199 (4)
H130.31390.92100.20080.024*
O140.54237 (14)0.74190 (12)0.18397 (4)0.0212 (3)
C140.4807 (2)0.83225 (18)0.19817 (6)0.0219 (4)
H140.52930.88240.21400.026*
C150.4750 (2)0.66578 (17)0.16155 (6)0.0186 (4)
C160.5656 (2)0.57722 (19)0.14690 (7)0.0253 (5)
H16A0.51420.51980.13330.038*
H16B0.61280.54300.16860.038*
H16C0.62950.61060.12910.038*
O170.19558 (13)0.42416 (11)0.18968 (4)0.0149 (3)
C170.2217 (2)0.32733 (17)0.20767 (5)0.0176 (4)
O180.00872 (14)0.26406 (11)0.19152 (4)0.0200 (3)
C180.1169 (2)0.24472 (17)0.20831 (6)0.0190 (4)
C190.1442 (2)0.14328 (18)0.22914 (6)0.0271 (5)
H190.07900.08630.23070.033*
O200.35898 (17)0.20517 (13)0.24421 (4)0.0298 (4)
C200.2613 (3)0.12923 (19)0.24636 (7)0.0306 (5)
H200.27610.06270.26070.037*
C210.3390 (2)0.30395 (17)0.22475 (6)0.0230 (5)
C220.4570 (2)0.3771 (2)0.22506 (7)0.0304 (5)
H22A0.43490.44930.21330.046*
H22B0.52800.34150.21030.046*
H22C0.48630.38890.25170.046*
O230.03074 (13)0.60477 (11)0.16908 (4)0.0158 (3)
C230.10381 (18)0.64703 (16)0.19743 (5)0.0141 (4)
O240.09670 (14)0.46957 (12)0.22689 (4)0.0195 (3)
C240.13606 (19)0.57043 (17)0.22846 (6)0.0161 (4)
C250.2127 (2)0.61392 (18)0.25957 (6)0.0198 (4)
H250.23600.56720.28070.024*
O260.22396 (13)0.79036 (11)0.22951 (4)0.0173 (3)
C260.2517 (2)0.72161 (18)0.25875 (6)0.0206 (4)
H260.30100.74990.27990.025*
C270.15229 (18)0.75339 (17)0.19842 (6)0.0149 (4)
C280.1401 (2)0.84188 (17)0.16854 (6)0.0194 (4)
H28A0.07150.89530.17630.029*
H28B0.22470.88110.16580.029*
H28C0.11620.80770.14380.029*
C290.3482 (2)0.8605 (2)0.02648 (7)0.0295 (5)
C300.3451 (2)0.7731 (2)0.05304 (7)0.0331 (6)
H300.28610.77740.07430.040*
C310.4249 (3)0.6811 (2)0.04938 (7)0.0368 (6)
H310.42030.62240.06780.044*
C320.5119 (3)0.6737 (2)0.01900 (8)0.0355 (6)
H320.56770.61020.01640.043*
C330.5172 (2)0.7596 (2)0.00775 (7)0.0314 (5)
H330.57750.75510.02860.038*
C340.4361 (2)0.8516 (2)0.00441 (7)0.0282 (5)
H340.43980.90930.02320.034*
C350.2573 (3)0.9597 (2)0.03019 (9)0.0462 (7)
H35A0.16960.93990.02020.069*
H35B0.29281.02260.01540.069*
H35C0.25020.98100.05740.069*
C360.8257 (2)0.05574 (18)0.10456 (7)0.0250 (5)
C370.7762 (2)0.02873 (18)0.08076 (6)0.0252 (5)
H370.83210.06120.06180.030*
C380.6478 (2)0.06617 (19)0.08413 (7)0.0275 (5)
H380.61600.12400.06780.033*
C390.5654 (2)0.01900 (19)0.11148 (7)0.0286 (5)
H390.47720.04480.11410.034*
C400.6122 (2)0.06595 (19)0.13505 (7)0.0289 (5)
H400.55550.09880.15370.035*
C410.7414 (2)0.10325 (18)0.13158 (7)0.0269 (5)
H410.77250.16180.14780.032*
C420.9677 (2)0.0922 (2)0.10165 (8)0.0359 (6)
H42A0.98390.12350.07590.054*
H42B1.02570.02770.10590.054*
H42C0.98600.14930.12130.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01236 (11)0.01449 (11)0.01537 (11)0.00109 (9)0.00032 (8)0.00205 (9)
Zn20.01327 (12)0.01753 (11)0.01428 (11)0.00031 (9)0.00046 (9)0.00250 (9)
Zn30.01395 (12)0.01278 (11)0.01416 (11)0.00048 (9)0.00176 (9)0.00036 (9)
C10.0158 (10)0.0227 (10)0.0240 (11)0.0039 (8)0.0001 (8)0.0043 (9)
C20.0307 (13)0.0210 (11)0.0338 (13)0.0052 (9)0.0031 (10)0.0048 (10)
O30.0131 (7)0.0216 (7)0.0124 (7)0.0006 (6)0.0025 (5)0.0028 (5)
C30.0160 (10)0.0111 (9)0.0186 (10)0.0017 (7)0.0047 (8)0.0006 (7)
O40.0168 (7)0.0197 (7)0.0237 (8)0.0030 (6)0.0002 (6)0.0001 (6)
C40.0177 (10)0.0131 (9)0.0230 (11)0.0002 (8)0.0026 (8)0.0014 (8)
C50.0210 (11)0.0230 (11)0.0320 (12)0.0063 (9)0.0102 (9)0.0027 (9)
O60.0325 (9)0.0313 (9)0.0170 (7)0.0058 (7)0.0088 (7)0.0038 (6)
C60.0306 (13)0.0288 (12)0.0282 (12)0.0093 (10)0.0140 (10)0.0015 (10)
C70.0220 (11)0.0178 (10)0.0183 (10)0.0012 (8)0.0056 (8)0.0020 (8)
C80.0291 (12)0.0324 (12)0.0173 (10)0.0035 (10)0.0022 (9)0.0002 (9)
C90.0198 (11)0.0247 (11)0.0160 (10)0.0031 (9)0.0001 (8)0.0042 (8)
C100.0257 (12)0.0233 (11)0.0264 (11)0.0014 (9)0.0072 (9)0.0015 (9)
O110.0109 (7)0.0157 (7)0.0184 (7)0.0018 (5)0.0008 (5)0.0006 (6)
C110.0138 (10)0.0153 (9)0.0148 (9)0.0028 (7)0.0001 (7)0.0014 (8)
O120.0147 (7)0.0196 (7)0.0261 (8)0.0007 (6)0.0015 (6)0.0029 (6)
C120.0182 (11)0.0171 (10)0.0144 (10)0.0029 (8)0.0020 (8)0.0016 (8)
C130.0219 (11)0.0185 (10)0.0193 (10)0.0022 (8)0.0018 (8)0.0032 (8)
O140.0150 (7)0.0229 (7)0.0256 (8)0.0036 (6)0.0036 (6)0.0056 (6)
C140.0241 (11)0.0211 (10)0.0205 (10)0.0059 (9)0.0029 (9)0.0043 (9)
C150.0183 (10)0.0173 (10)0.0203 (10)0.0039 (8)0.0008 (8)0.0011 (8)
C160.0147 (10)0.0264 (11)0.0347 (13)0.0008 (9)0.0007 (9)0.0060 (10)
O170.0170 (7)0.0138 (6)0.0137 (6)0.0034 (5)0.0004 (5)0.0014 (5)
C170.0243 (11)0.0174 (9)0.0111 (9)0.0057 (8)0.0010 (8)0.0009 (8)
O180.0216 (8)0.0155 (7)0.0231 (8)0.0007 (6)0.0042 (6)0.0015 (6)
C180.0260 (11)0.0173 (10)0.0137 (10)0.0051 (8)0.0047 (8)0.0006 (8)
C190.0399 (14)0.0179 (11)0.0235 (11)0.0056 (10)0.0046 (10)0.0038 (9)
O200.0405 (10)0.0263 (8)0.0225 (8)0.0156 (7)0.0096 (7)0.0010 (7)
C200.0505 (16)0.0174 (10)0.0237 (12)0.0106 (11)0.0001 (11)0.0026 (9)
C210.0311 (12)0.0201 (10)0.0177 (10)0.0083 (9)0.0054 (9)0.0027 (8)
C220.0270 (12)0.0299 (12)0.0342 (13)0.0073 (10)0.0144 (10)0.0065 (10)
O230.0177 (7)0.0149 (7)0.0147 (7)0.0028 (5)0.0049 (6)0.0015 (5)
C230.0090 (9)0.0184 (10)0.0150 (9)0.0008 (7)0.0000 (7)0.0014 (8)
O240.0223 (8)0.0193 (7)0.0169 (7)0.0030 (6)0.0048 (6)0.0028 (6)
C240.0132 (9)0.0188 (10)0.0163 (9)0.0014 (8)0.0018 (7)0.0006 (8)
C250.0182 (11)0.0241 (11)0.0171 (10)0.0003 (9)0.0044 (8)0.0015 (8)
O260.0150 (7)0.0179 (7)0.0190 (7)0.0029 (6)0.0010 (6)0.0044 (6)
C260.0150 (10)0.0285 (11)0.0183 (10)0.0000 (9)0.0052 (8)0.0026 (9)
C270.0105 (9)0.0195 (10)0.0148 (9)0.0007 (7)0.0004 (7)0.0032 (8)
C280.0201 (11)0.0172 (10)0.0210 (10)0.0038 (8)0.0000 (8)0.0010 (8)
C290.0227 (12)0.0364 (13)0.0294 (12)0.0093 (10)0.0032 (10)0.0091 (10)
C300.0246 (13)0.0540 (16)0.0207 (12)0.0184 (12)0.0021 (10)0.0016 (11)
C310.0337 (14)0.0446 (15)0.0320 (13)0.0161 (12)0.0077 (11)0.0113 (12)
C320.0314 (14)0.0349 (14)0.0402 (14)0.0051 (11)0.0056 (11)0.0021 (12)
C330.0289 (13)0.0415 (14)0.0239 (12)0.0087 (11)0.0044 (10)0.0045 (10)
C340.0299 (13)0.0310 (13)0.0235 (12)0.0104 (10)0.0000 (10)0.0002 (10)
C350.0398 (16)0.0420 (16)0.0568 (19)0.0031 (12)0.0046 (14)0.0095 (14)
C360.0293 (12)0.0181 (10)0.0276 (12)0.0028 (9)0.0015 (10)0.0070 (9)
C370.0304 (13)0.0219 (11)0.0233 (11)0.0063 (9)0.0013 (10)0.0035 (9)
C380.0315 (13)0.0234 (11)0.0276 (12)0.0011 (10)0.0095 (10)0.0020 (10)
C390.0260 (13)0.0274 (12)0.0324 (13)0.0006 (10)0.0058 (10)0.0094 (10)
C400.0330 (13)0.0253 (11)0.0284 (12)0.0083 (10)0.0023 (10)0.0063 (10)
C410.0346 (13)0.0185 (11)0.0277 (12)0.0007 (9)0.0021 (10)0.0022 (9)
C420.0327 (14)0.0298 (13)0.0451 (15)0.0042 (10)0.0025 (12)0.0003 (11)
Geometric parameters (Å, º) top
Zn1—C11.971 (2)C17—C211.355 (3)
Zn1—O32.0293 (14)C17—C181.449 (3)
Zn1—O112.0077 (15)O18—C181.260 (3)
Zn1—O172.0675 (14)C18—C191.437 (3)
Zn2—C91.981 (2)C19—C201.336 (4)
Zn2—O112.0943 (14)C19—H190.9500
Zn2—O122.1109 (15)O20—C201.345 (3)
Zn2—O232.0193 (14)O20—C211.374 (3)
Zn2—O32.6270 (15)C20—H200.9500
Zn3—O32.1060 (14)C21—C221.480 (3)
Zn3—O42.0802 (15)C22—H22A0.9800
Zn3—O232.0759 (15)C22—H22B0.9800
Zn3—O242.0729 (14)C22—H22C0.9800
Zn3—O172.1439 (15)O23—C231.331 (2)
Zn3—O182.1081 (15)C23—C271.363 (3)
Zn1—Zn33.1430 (9)C23—C241.450 (3)
C1—C21.536 (3)O24—C241.271 (2)
C1—H1A0.9900C24—C251.428 (3)
C1—H1B0.9900C25—C261.346 (3)
C2—H2A0.9800C25—H250.9500
C2—H2B0.9800O26—C261.335 (2)
C2—H2C0.9800O26—C271.374 (2)
O3—C31.332 (2)C26—H260.9500
C3—C71.355 (3)C27—C281.486 (3)
C3—C41.450 (3)C28—H28A0.9800
O4—C41.258 (2)C28—H28B0.9800
C4—C51.428 (3)C28—H28C0.9800
C5—C61.334 (3)C29—C301.392 (4)
C5—H50.9500C29—C341.399 (3)
O6—C61.349 (3)C29—C351.506 (4)
O6—C71.369 (2)C30—C311.371 (4)
C6—H60.9500C30—H300.9500
C7—C81.487 (3)C31—C321.378 (4)
C8—H8A0.9800C31—H310.9500
C8—H8B0.9800C32—C331.384 (4)
C8—H8C0.9800C32—H320.9500
C9—C101.532 (3)C33—C341.377 (4)
C9—H9A0.9900C33—H330.9500
C9—H9B0.9900C34—H340.9500
C10—H10A0.9800C35—H35A0.9800
C10—H10B0.9800C35—H35B0.9800
C10—H10C0.9800C35—H35C0.9800
O11—C111.340 (2)C36—C411.391 (3)
C11—C151.361 (3)C36—C371.395 (3)
C11—C121.456 (3)C36—C421.506 (3)
O12—C121.259 (2)C37—C381.381 (3)
C12—C131.426 (3)C37—H370.9500
C13—C141.342 (3)C38—C391.384 (3)
C13—H130.9500C38—H380.9500
O14—C141.342 (3)C39—C401.385 (3)
O14—C151.376 (2)C39—H390.9500
C14—H140.9500C40—C411.387 (3)
C15—C161.491 (3)C40—H400.9500
C16—H16A0.9800C41—H410.9500
C16—H16B0.9800C42—H42A0.9800
C16—H16C0.9800C42—H42B0.9800
O17—C171.340 (2)C42—H42C0.9800
C1—Zn1—O11134.76 (8)C15—C16—H16A109.5
C1—Zn1—O3122.44 (7)C15—C16—H16B109.5
O11—Zn1—O387.25 (5)H16A—C16—H16B109.5
C1—Zn1—O17118.81 (8)C15—C16—H16C109.5
O11—Zn1—O1795.53 (5)H16A—C16—H16C109.5
O3—Zn1—O1784.11 (6)H16B—C16—H16C109.5
C1—Zn1—Zn3133.28 (6)C17—O17—Zn1116.08 (11)
O11—Zn1—Zn391.84 (4)C17—O17—Zn3110.18 (12)
O3—Zn1—Zn341.45 (4)Zn1—O17—Zn396.53 (6)
O17—Zn1—Zn342.66 (4)O17—C17—C21123.53 (19)
C9—Zn2—O23123.58 (7)O17—C17—C18116.88 (18)
C9—Zn2—O11125.55 (7)C21—C17—C18119.59 (19)
O23—Zn2—O11105.43 (6)C18—O18—Zn3112.37 (13)
C9—Zn2—O12117.31 (8)O18—C18—C19123.5 (2)
O23—Zn2—O1292.80 (6)O18—C18—C17120.21 (18)
O11—Zn2—O1278.77 (6)C19—C18—C17116.3 (2)
O24—Zn3—O2379.77 (5)C20—C19—C18119.9 (2)
O24—Zn3—O4103.06 (6)C20—C19—H19120.0
O23—Zn3—O497.63 (6)C18—C19—H19120.0
O24—Zn3—O3162.57 (6)C20—O20—C21119.99 (18)
O23—Zn3—O382.81 (5)C19—C20—O20122.9 (2)
O4—Zn3—O379.64 (6)C19—C20—H20118.6
O24—Zn3—O1889.61 (6)O20—C20—H20118.6
O23—Zn3—O18168.68 (5)C17—C21—O20121.2 (2)
O4—Zn3—O1888.54 (6)C17—C21—C22126.0 (2)
O3—Zn3—O18107.74 (5)O20—C21—C22112.73 (19)
O24—Zn3—O17102.00 (6)C21—C22—H22A109.5
O23—Zn3—O1799.71 (5)C21—C22—H22B109.5
O4—Zn3—O17151.62 (5)H22A—C22—H22B109.5
O3—Zn3—O1780.44 (5)C21—C22—H22C109.5
O18—Zn3—O1778.54 (5)H22A—C22—H22C109.5
O24—Zn3—Zn1140.09 (4)H22B—C22—H22C109.5
O23—Zn3—Zn191.53 (4)C23—O23—Zn2135.97 (12)
O4—Zn3—Zn1116.73 (4)C23—O23—Zn3111.61 (11)
O3—Zn3—Zn139.63 (4)Zn2—O23—Zn3112.17 (6)
O18—Zn3—Zn194.17 (4)O23—C23—C27125.00 (18)
O17—Zn3—Zn140.81 (4)O23—C23—C24115.78 (17)
C2—C1—Zn1111.80 (15)C27—C23—C24119.19 (18)
C2—C1—H1A109.3C24—O24—Zn3111.97 (12)
Zn1—C1—H1A109.3O24—C24—C25123.28 (18)
C2—C1—H1B109.3O24—C24—C23119.69 (17)
Zn1—C1—H1B109.3C25—C24—C23117.02 (18)
H1A—C1—H1B107.9C26—C25—C24119.46 (19)
C1—C2—H2A109.5C26—C25—H25120.3
C1—C2—H2B109.5C24—C25—H25120.3
H2A—C2—H2B109.5C26—O26—C27120.69 (16)
C1—C2—H2C109.5O26—C26—C25122.80 (19)
H2A—C2—H2C109.5O26—C26—H26118.6
H2B—C2—H2C109.5C25—C26—H26118.6
C3—O3—Zn1140.03 (12)C23—C27—O26120.72 (17)
C3—O3—Zn3110.75 (12)C23—C27—C28127.98 (18)
Zn1—O3—Zn398.92 (6)O26—C27—C28111.29 (16)
O3—C3—C7123.35 (18)C27—C28—H28A109.5
O3—C3—C4116.32 (17)C27—C28—H28B109.5
C7—C3—C4120.32 (18)H28A—C28—H28B109.5
C4—O4—Zn3112.23 (13)C27—C28—H28C109.5
O4—C4—C5123.75 (19)H28A—C28—H28C109.5
O4—C4—C3120.44 (18)H28B—C28—H28C109.5
C5—C4—C3115.80 (19)C30—C29—C34117.7 (2)
C6—C5—C4120.0 (2)C30—C29—C35121.2 (2)
C6—C5—H5120.0C34—C29—C35121.1 (2)
C4—C5—H5120.0C31—C30—C29121.7 (2)
C6—O6—C7119.56 (17)C31—C30—H30119.1
C5—C6—O6123.3 (2)C29—C30—H30119.1
C5—C6—H6118.3C30—C31—C32120.1 (2)
O6—C6—H6118.3C30—C31—H31120.0
C3—C7—O6120.93 (19)C32—C31—H31120.0
C3—C7—C8126.41 (19)C31—C32—C33119.4 (3)
O6—C7—C8112.65 (18)C31—C32—H32120.3
C7—C8—H8A109.5C33—C32—H32120.3
C7—C8—H8B109.5C34—C33—C32120.7 (2)
H8A—C8—H8B109.5C34—C33—H33119.6
C7—C8—H8C109.5C32—C33—H33119.6
H8A—C8—H8C109.5C33—C34—C29120.5 (2)
H8B—C8—H8C109.5C33—C34—H34119.8
C10—C9—Zn2116.61 (15)C29—C34—H34119.8
C10—C9—H9A108.1C29—C35—H35A109.5
Zn2—C9—H9A108.1C29—C35—H35B109.5
C10—C9—H9B108.1H35A—C35—H35B109.5
Zn2—C9—H9B108.1C29—C35—H35C109.5
H9A—C9—H9B107.3H35A—C35—H35C109.5
C9—C10—H10A109.5H35B—C35—H35C109.5
C9—C10—H10B109.5C41—C36—C37118.2 (2)
H10A—C10—H10B109.5C41—C36—C42121.0 (2)
C9—C10—H10C109.5C37—C36—C42120.7 (2)
H10A—C10—H10C109.5C38—C37—C36121.4 (2)
H10B—C10—H10C109.5C38—C37—H37119.3
C11—O11—Zn1129.03 (12)C36—C37—H37119.3
C11—O11—Zn2112.67 (12)C37—C38—C39119.7 (2)
Zn1—O11—Zn2109.73 (6)C37—C38—H38120.1
O11—C11—C15124.91 (18)C39—C38—H38120.1
O11—C11—C12115.63 (17)C38—C39—C40119.8 (2)
C15—C11—C12119.34 (18)C38—C39—H39120.1
C12—O12—Zn2112.83 (13)C40—C39—H39120.1
O12—C12—C13123.14 (19)C39—C40—C41120.3 (2)
O12—C12—C11120.04 (18)C39—C40—H40119.8
C13—C12—C11116.82 (18)C41—C40—H40119.8
C14—C13—C12119.68 (19)C40—C41—C36120.6 (2)
C14—C13—H13120.2C40—C41—H41119.7
C12—C13—H13120.2C36—C41—H41119.7
C14—O14—C15120.55 (16)C36—C42—H42A109.5
O14—C14—C13122.80 (19)C36—C42—H42B109.5
O14—C14—H14118.6H42A—C42—H42B109.5
C13—C14—H14118.6C36—C42—H42C109.5
C11—C15—O14120.56 (18)H42A—C42—H42C109.5
C11—C15—C16128.53 (19)H42B—C42—H42C109.5
O14—C15—C16110.89 (17)
C1—Zn1—Zn3—O24114.71 (11)C12—C11—C15—C16172.7 (2)
O11—Zn1—Zn3—O2468.86 (7)C14—O14—C15—C112.6 (3)
O3—Zn1—Zn3—O24152.61 (9)C14—O14—C15—C16176.04 (18)
O17—Zn1—Zn3—O2427.30 (8)C1—Zn1—O17—C177.63 (16)
C1—Zn1—Zn3—O23169.47 (10)O11—Zn1—O17—C17157.01 (13)
O11—Zn1—Zn3—O236.96 (5)O3—Zn1—O17—C17116.34 (14)
O3—Zn1—Zn3—O2376.78 (7)Zn3—Zn1—O17—C17116.27 (15)
O17—Zn1—Zn3—O23103.12 (7)C1—Zn1—O17—Zn3123.91 (8)
C1—Zn1—Zn3—O470.14 (10)O11—Zn1—O17—Zn386.71 (5)
O11—Zn1—Zn3—O4106.30 (6)O3—Zn1—O17—Zn30.06 (5)
O3—Zn1—Zn3—O422.55 (7)O24—Zn3—O17—C1776.61 (12)
O17—Zn1—Zn3—O4157.55 (7)O23—Zn3—O17—C17158.11 (12)
C1—Zn1—Zn3—O392.69 (11)O4—Zn3—O17—C1775.02 (16)
O11—Zn1—Zn3—O383.75 (7)O3—Zn3—O17—C17120.96 (12)
O17—Zn1—Zn3—O3179.91 (8)O18—Zn3—O17—C1710.51 (12)
C1—Zn1—Zn3—O1820.32 (10)Zn1—Zn3—O17—C17120.90 (13)
O11—Zn1—Zn3—O18163.25 (6)O24—Zn3—O17—Zn1162.49 (5)
O3—Zn1—Zn3—O18113.01 (7)O23—Zn3—O17—Zn180.99 (6)
O17—Zn1—Zn3—O1867.09 (7)O4—Zn3—O17—Zn145.88 (13)
C1—Zn1—Zn3—O1787.41 (10)O3—Zn3—O17—Zn10.06 (5)
O11—Zn1—Zn3—O1796.16 (7)O18—Zn3—O17—Zn1110.39 (6)
O3—Zn1—Zn3—O17179.91 (8)Zn1—O17—C17—C2179.8 (2)
O11—Zn1—C1—C2154.88 (13)Zn3—O17—C17—C21171.89 (16)
O3—Zn1—C1—C231.49 (19)Zn1—O17—C17—C18100.05 (17)
O17—Zn1—C1—C270.68 (17)Zn3—O17—C17—C188.3 (2)
Zn3—Zn1—C1—C220.1 (2)O24—Zn3—O18—C1890.51 (14)
C1—Zn1—O3—C317.7 (2)O23—Zn3—O18—C1870.3 (3)
O11—Zn1—O3—C3125.88 (19)O4—Zn3—O18—C18166.41 (13)
O17—Zn1—O3—C3138.27 (19)O3—Zn3—O18—C1887.77 (14)
Zn3—Zn1—O3—C3138.2 (2)O17—Zn3—O18—C1811.82 (13)
C1—Zn1—O3—Zn3120.50 (9)Zn1—Zn3—O18—C1849.72 (13)
O11—Zn1—O3—Zn395.91 (6)Zn3—O18—C18—C19167.88 (16)
O17—Zn1—O3—Zn30.06 (5)Zn3—O18—C18—C1711.4 (2)
O24—Zn3—O3—C3107.5 (2)O17—C17—C18—O182.0 (3)
O23—Zn3—O3—C3106.02 (12)C21—C17—C18—O18177.82 (19)
O4—Zn3—O3—C36.87 (12)O17—C17—C18—C19177.37 (17)
O18—Zn3—O3—C378.21 (12)C21—C17—C18—C192.8 (3)
O17—Zn3—O3—C3152.82 (12)O18—C18—C19—C20179.7 (2)
Zn1—Zn3—O3—C3152.75 (15)C17—C18—C19—C200.3 (3)
O24—Zn3—O3—Zn199.71 (18)C18—C19—C20—O202.2 (3)
O23—Zn3—O3—Zn1101.22 (6)C21—O20—C20—C192.2 (3)
O4—Zn3—O3—Zn1159.62 (7)O17—C17—C21—O20177.28 (17)
O18—Zn3—O3—Zn174.54 (6)C18—C17—C21—O202.9 (3)
O17—Zn3—O3—Zn10.06 (5)O17—C17—C21—C222.7 (3)
Zn1—O3—C3—C738.8 (3)C18—C17—C21—C22177.1 (2)
Zn3—O3—C3—C7174.06 (16)C20—O20—C21—C170.4 (3)
Zn1—O3—C3—C4142.15 (16)C20—O20—C21—C22179.60 (19)
Zn3—O3—C3—C46.9 (2)C9—Zn2—O23—C2383.56 (19)
O24—Zn3—O4—C4168.35 (13)O11—Zn2—O23—C23121.29 (17)
O23—Zn3—O4—C487.15 (14)O12—Zn2—O23—C2342.17 (18)
O3—Zn3—O4—C45.94 (13)C9—Zn2—O23—Zn3102.85 (10)
O18—Zn3—O4—C4102.39 (14)O11—Zn2—O23—Zn352.30 (8)
O17—Zn3—O4—C440.14 (19)O12—Zn2—O23—Zn3131.43 (7)
Zn1—Zn3—O4—C48.46 (14)O24—Zn3—O23—C239.44 (12)
Zn3—O4—C4—C5175.83 (16)O4—Zn3—O23—C2392.54 (13)
Zn3—O4—C4—C34.2 (2)O3—Zn3—O23—C23171.02 (13)
O3—C3—C4—O42.0 (3)O18—Zn3—O23—C2330.0 (3)
C7—C3—C4—O4178.91 (19)O17—Zn3—O23—C23110.01 (12)
O3—C3—C4—C5177.97 (17)Zn1—Zn3—O23—C23150.23 (12)
C7—C3—C4—C51.1 (3)O24—Zn3—O23—Zn2165.78 (8)
O4—C4—C5—C6179.1 (2)O4—Zn3—O23—Zn292.24 (7)
C3—C4—C5—C61.0 (3)O3—Zn3—O23—Zn213.76 (7)
C4—C5—C6—O60.0 (4)O18—Zn3—O23—Zn2145.3 (3)
C7—O6—C6—C51.0 (3)O17—Zn3—O23—Zn265.20 (7)
O3—C3—C7—O6178.77 (17)Zn1—Zn3—O23—Zn224.98 (6)
C4—C3—C7—O60.2 (3)Zn2—O23—C23—C2717.4 (3)
O3—C3—C7—C80.3 (3)Zn3—O23—C23—C27168.99 (16)
C4—C3—C7—C8179.32 (19)Zn2—O23—C23—C24164.84 (13)
C6—O6—C7—C30.8 (3)Zn3—O23—C23—C248.8 (2)
C6—O6—C7—C8178.38 (19)O23—Zn3—O24—C248.81 (13)
O23—Zn2—C9—C106.7 (2)O4—Zn3—O24—C2486.74 (14)
O11—Zn2—C9—C10143.40 (14)O3—Zn3—O24—C2410.3 (3)
O12—Zn2—C9—C10120.88 (15)O18—Zn3—O24—C24175.14 (14)
C1—Zn1—O11—C1173.88 (18)O17—Zn3—O24—C24106.67 (13)
O3—Zn1—O11—C11150.99 (15)Zn1—Zn3—O24—C2488.82 (14)
O17—Zn1—O11—C1167.18 (16)Zn3—O24—C24—C25172.62 (15)
Zn3—Zn1—O11—C11109.78 (15)Zn3—O24—C24—C237.0 (2)
C1—Zn1—O11—Zn2141.24 (10)O23—C23—C24—O241.3 (3)
O3—Zn1—O11—Zn26.11 (6)C27—C23—C24—O24176.61 (18)
O17—Zn1—O11—Zn277.70 (7)O23—C23—C24—C25179.10 (17)
Zn3—Zn1—O11—Zn235.10 (6)C27—C23—C24—C253.0 (3)
C9—Zn2—O11—C11113.57 (14)O24—C24—C25—C26179.2 (2)
O23—Zn2—O11—C1191.92 (13)C23—C24—C25—C260.4 (3)
O12—Zn2—O11—C112.10 (12)C27—O26—C26—C250.3 (3)
C9—Zn2—O11—Zn195.40 (10)C24—C25—C26—O261.3 (3)
O23—Zn2—O11—Zn159.12 (7)O23—C23—C27—O26178.22 (17)
O12—Zn2—O11—Zn1148.94 (7)C24—C23—C27—O264.1 (3)
Zn1—O11—C11—C1542.4 (3)O23—C23—C27—C282.7 (3)
Zn2—O11—C11—C15173.51 (16)C24—C23—C27—C28174.98 (19)
Zn1—O11—C11—C12141.61 (14)C26—O26—C27—C232.5 (3)
Zn2—O11—C11—C122.5 (2)C26—O26—C27—C28176.74 (17)
C9—Zn2—O12—C12122.96 (14)C34—C29—C30—C310.0 (3)
O23—Zn2—O12—C12106.61 (14)C35—C29—C30—C31178.3 (2)
O11—Zn2—O12—C121.42 (13)C29—C30—C31—C320.5 (4)
Zn2—O12—C12—C13179.17 (15)C30—C31—C32—C330.3 (4)
Zn2—O12—C12—C110.6 (2)C31—C32—C33—C340.5 (4)
O11—C11—C12—O121.3 (3)C32—C33—C34—C291.0 (4)
C15—C11—C12—O12174.89 (18)C30—C29—C34—C330.8 (3)
O11—C11—C12—C13178.94 (17)C35—C29—C34—C33179.0 (2)
C15—C11—C12—C134.9 (3)C41—C36—C37—C381.1 (3)
O12—C12—C13—C14178.7 (2)C42—C36—C37—C38177.4 (2)
C11—C12—C13—C141.1 (3)C36—C37—C38—C390.3 (3)
C15—O14—C14—C131.4 (3)C37—C38—C39—C400.5 (3)
C12—C13—C14—O142.1 (3)C38—C39—C40—C410.5 (3)
O11—C11—C15—O14178.51 (17)C39—C40—C41—C360.3 (3)
C12—C11—C15—O145.7 (3)C37—C36—C41—C401.1 (3)
O11—C11—C15—C163.1 (3)C42—C36—C41—C40177.4 (2)
Hydrogen-bond geometry (Å, º) top
Please define Cg1 and Cg2
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.952.533.477 (3)172
C14—H14···O24ii0.952.393.286 (3)156
C20—H20···O17iii0.952.403.332 (3)166
C26—H26···O18iv0.952.333.167 (3)146
C28—H28B···Cg2v0.982.723.411 (3)128
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn3(C2H5)2(C6H5O3)4]·2C7H8
Mr938.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.125 (3), 11.949 (4), 34.653 (6)
β (°) 90.20 (2)
V3)4192 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.43 × 0.37 × 0.09
Data collection
DiffractometerKUMA KM4 CCD κ-geometry
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.580, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
45983, 9131, 7444
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.04
No. of reflections9131
No. of parameters521
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
Zn1—C11.971 (2)Zn2—O32.6270 (15)
Zn1—O32.0293 (14)Zn3—O32.1060 (14)
Zn1—O112.0077 (15)Zn3—O42.0802 (15)
Zn1—O172.0675 (14)Zn3—O232.0759 (15)
Zn2—C91.981 (2)Zn3—O242.0729 (14)
Zn2—O112.0943 (14)Zn3—O172.1439 (15)
Zn2—O122.1109 (15)Zn3—O182.1081 (15)
Zn2—O232.0193 (14)
Hydrogen-bond geometry (Å, º) top
Please define Cg1 and Cg2
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.952.533.477 (3)172
C14—H14···O24ii0.952.393.286 (3)156
C20—H20···O17iii0.952.403.332 (3)166
C26—H26···O18iv0.952.333.167 (3)146
C28—H28B···Cg2v0.982.723.411 (3)128
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x1, y+1, z.
 

Acknowledgements

This work was supported by the Polish Ministry of Sciences and Higher Education (grant No. N N209 027 940) and the European Social Funds (ESF) in the areas of Human Capital Strategy Program and the Marshal's Office of Lower Silesia.

References

First citationAhmed, S. I., Burgess, J., Fawcett, J., Parsons, S. A., Russell, D. R. & Laurie, S. H. (2000). Polyhedron, 19, 129–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlvarez, S., Avnir, D., Llunell, M. & Pinsky, M. (2002). New J. Chem. 26, 996–1009.  Web of Science CrossRef CAS Google Scholar
First citationBoyle, T. J., Bunge, S. D., Andrews, N. L., Matzen, L. E., Sieg, K., Rodriguez, M. A. & Headley, T. J. (2004). Chem. Mater. 16, 3279–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationChamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229–3238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaplunov, M. G., Nikitenko, S. N. & Krasnikova, S. S. (2012). Nanoscale Res. Lett. 7, 206–214.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaxim, C., Pasatoiu, T. D., Kravtsov, V. Ch., Shova, S., Muryn, C. A., Winpenny, R. E. P., Tuna, F. & Andruh, M. (2008). Inorg. Chim. Acta, 361, 3903–3911.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED in Xcalibur PX Software. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPetrus, R. & Sobota, P. (2012a). Organometallics, 31, 4755–4762.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetrus, R. & Sobota, P. (2012b). Acta Cryst. C68, m275–m280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRomero, M. J., Pedrido, R., González-Noya, A. M., Martínez-Calvo, M., Zaragoza, G. & Bermejo, M. R. (2010). Chem. Commun. 46, 5115–5117.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., Barta, C. A. & Orvig, C. (2006). Chem. Soc. Rev. 35, 545–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThompson, K. H., Chiles, J., Yuen, V. G., Tse, J., McNeill, J. H. & Orvig, C. (2004). J. Inorg. Biochem. 98, 683–690.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds