supplementary materials


bq2384 scheme

Acta Cryst. (2013). E69, o773    [ doi:10.1107/S1600536813009975 ]

2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one

D. Ren

Abstract top

In the title compound, C14H19NO, the dihedral angle between the benzene ring and the plane of the amide group is 80.6 (1)°. In the crystal, molecules are connected via weak C-H...O hydrogen bonds, forming chains along the c-axis direction. The conformation of the five-memebred ring is an envelope, with one of the ring C atoms adjacent to the ring N atom as the flap atom.

Comment top

The title compound is an important intermediate in the synthesis of [(piperidinoalkanoyl)phenyl]propionates, which can be utilized to synthesize antihistaminics. And we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. There is a intermolecular contact C—H···O in the title compound, forming molecular chains along c axis direction (Table 1, Fig. 2). The dihedral angles between the benzene ring and the plane of amide is 80.6 (1)°.

Related literature top

For background to the applications of the title compound, an important organic synthesis intermediate, see: Richard et al. (2001). For the synthetic procedure, see: Richard et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Richard et al., 1995). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H's, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) showing C-H···O bonds with dashed lines.
2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one top
Crystal data top
C14H19NOF(000) = 472
Mr = 217.30Dx = 1.158 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.2330 (16) Åθ = 10–13°
b = 12.534 (3) ŵ = 0.07 mm1
c = 12.192 (2) ÅT = 293 K
β = 97.96 (3)°Block, colorless
V = 1246.0 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1316 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.979, Tmax = 0.993l = 014
2283 measured reflections3 standard reflections every 200 reflections
2283 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2 + 0.270P]
where P = (Fo2 + 2Fc2)/3
2283 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H19NOV = 1246.0 (4) Å3
Mr = 217.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2330 (16) ŵ = 0.07 mm1
b = 12.534 (3) ÅT = 293 K
c = 12.192 (2) Å0.30 × 0.20 × 0.10 mm
β = 97.96 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1316 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.979, Tmax = 0.993θmax = 25.4°
2283 measured reflections3 standard reflections every 200 reflections
2283 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.152Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.22 e Å3
2283 reflectionsAbsolute structure: ?
147 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1927 (2)0.24083 (17)0.16560 (15)0.0730 (7)
N10.2387 (2)0.34793 (18)0.31203 (16)0.0491 (6)
C10.2993 (4)0.3817 (2)0.4267 (2)0.0633 (8)
H1A0.26140.33340.47990.076*
H1B0.41820.38380.43910.076*
C20.2319 (4)0.4866 (3)0.4358 (3)0.0842 (10)
H2A0.15060.48430.48630.101*
H2B0.31850.53490.46650.101*
C30.1581 (4)0.5259 (3)0.3317 (3)0.0819 (10)
H3A0.21950.58640.30980.098*
H3B0.04680.54900.33630.098*
C40.1570 (3)0.4378 (2)0.2480 (2)0.0620 (8)
H4A0.04570.41920.21700.074*
H4B0.21710.45850.18830.074*
C50.2512 (3)0.2526 (2)0.2639 (2)0.0457 (6)
C60.3330 (3)0.1583 (2)0.33080 (19)0.0429 (6)
C70.2188 (3)0.1215 (2)0.4117 (2)0.0551 (7)
H7A0.21140.17620.46600.083*
H7B0.26130.05740.44800.083*
H7C0.11180.10780.37200.083*
C80.3515 (3)0.0672 (2)0.2504 (2)0.0614 (8)
H8A0.42020.08980.19720.092*
H8B0.24550.04770.21270.092*
H8C0.40040.00690.29070.092*
C90.5076 (3)0.1884 (2)0.38690 (19)0.0414 (6)
C100.5641 (3)0.1624 (2)0.4966 (2)0.0530 (7)
H10A0.49400.12890.53940.064*
C110.7227 (3)0.1857 (2)0.5426 (2)0.0624 (8)
H11A0.75860.16750.61590.075*
C120.8267 (3)0.2348 (3)0.4818 (3)0.0654 (9)
H12A0.93340.25070.51320.078*
C130.7727 (3)0.2613 (3)0.3722 (2)0.0658 (9)
H13A0.84330.29470.32980.079*
C140.6134 (3)0.2378 (2)0.3264 (2)0.0561 (8)
H14A0.57780.25590.25300.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0851 (15)0.0855 (15)0.0406 (11)0.0132 (12)0.0194 (10)0.0072 (11)
N10.0442 (13)0.0590 (15)0.0403 (12)0.0075 (11)0.0073 (9)0.0037 (11)
C10.079 (2)0.0611 (19)0.0433 (16)0.0133 (17)0.0134 (14)0.0069 (14)
C20.104 (3)0.076 (2)0.070 (2)0.027 (2)0.0001 (19)0.0062 (18)
C30.095 (3)0.062 (2)0.082 (2)0.0266 (19)0.0103 (19)0.0001 (19)
C40.0570 (18)0.070 (2)0.0553 (17)0.0153 (15)0.0052 (14)0.0161 (16)
C50.0368 (14)0.0610 (18)0.0364 (14)0.0011 (13)0.0049 (11)0.0054 (14)
C60.0370 (14)0.0497 (16)0.0403 (14)0.0045 (12)0.0009 (11)0.0053 (12)
C70.0466 (15)0.0592 (18)0.0589 (17)0.0028 (14)0.0051 (13)0.0004 (14)
C80.0596 (18)0.0657 (19)0.0565 (17)0.0064 (15)0.0005 (14)0.0222 (15)
C90.0386 (14)0.0446 (15)0.0386 (13)0.0083 (12)0.0028 (11)0.0041 (12)
C100.0465 (15)0.0663 (19)0.0438 (15)0.0067 (14)0.0016 (12)0.0058 (14)
C110.0492 (17)0.080 (2)0.0519 (17)0.0116 (16)0.0151 (14)0.0049 (16)
C120.0390 (16)0.082 (2)0.071 (2)0.0110 (15)0.0092 (15)0.0231 (18)
C130.0397 (16)0.087 (2)0.071 (2)0.0079 (15)0.0058 (14)0.0049 (18)
C140.0466 (16)0.075 (2)0.0453 (15)0.0055 (14)0.0011 (12)0.0074 (15)
Geometric parameters (Å, º) top
O1—C51.237 (3)C6—C91.550 (3)
N1—C51.342 (3)C7—H7A0.9600
N1—C41.479 (3)C7—H7B0.9600
N1—C11.480 (3)C7—H7C0.9600
C1—C21.437 (4)C8—H8A0.9600
C1—H1A0.9700C8—H8B0.9600
C1—H1B0.9700C8—H8C0.9600
C2—C31.418 (4)C9—C141.366 (3)
C2—H2A0.9700C9—C101.392 (3)
C2—H2B0.9700C10—C111.380 (4)
C3—C41.502 (4)C10—H10A0.9300
C3—H3A0.9700C11—C121.356 (4)
C3—H3B0.9700C11—H11A0.9300
C4—H4A0.9700C12—C131.388 (4)
C4—H4B0.9700C12—H12A0.9300
C5—C61.537 (3)C13—C141.384 (3)
C6—C71.526 (3)C13—H13A0.9300
C6—C81.526 (3)C14—H14A0.9300
C5—N1—C4120.3 (2)C7—C6—C9113.9 (2)
C5—N1—C1129.2 (2)C8—C6—C9107.25 (19)
C4—N1—C1110.5 (2)C5—C6—C9111.0 (2)
C2—C1—N1104.6 (2)C6—C7—H7A109.5
C2—C1—H1A110.8C6—C7—H7B109.5
N1—C1—H1A110.8H7A—C7—H7B109.5
C2—C1—H1B110.8C6—C7—H7C109.5
N1—C1—H1B110.8H7A—C7—H7C109.5
H1A—C1—H1B108.9H7B—C7—H7C109.5
C3—C2—C1111.7 (3)C6—C8—H8A109.5
C3—C2—H2A109.3C6—C8—H8B109.5
C1—C2—H2A109.3H8A—C8—H8B109.5
C3—C2—H2B109.3C6—C8—H8C109.5
C1—C2—H2B109.3H8A—C8—H8C109.5
H2A—C2—H2B107.9H8B—C8—H8C109.5
C2—C3—C4108.4 (3)C14—C9—C10118.1 (2)
C2—C3—H3A110.0C14—C9—C6119.6 (2)
C4—C3—H3A110.0C10—C9—C6122.2 (2)
C2—C3—H3B110.0C11—C10—C9120.9 (3)
C4—C3—H3B110.0C11—C10—H10A119.6
H3A—C3—H3B108.4C9—C10—H10A119.6
N1—C4—C3104.0 (2)C12—C11—C10120.5 (3)
N1—C4—H4A111.0C12—C11—H11A119.8
C3—C4—H4A111.0C10—C11—H11A119.8
N1—C4—H4B111.0C11—C12—C13119.5 (3)
C3—C4—H4B111.0C11—C12—H12A120.2
H4A—C4—H4B109.0C13—C12—H12A120.2
O1—C5—N1119.1 (2)C14—C13—C12119.8 (3)
O1—C5—C6120.4 (2)C14—C13—H13A120.1
N1—C5—C6120.4 (2)C12—C13—H13A120.1
C7—C6—C8108.3 (2)C9—C14—C13121.2 (3)
C7—C6—C5108.2 (2)C9—C14—H14A119.4
C8—C6—C5108.0 (2)C13—C14—H14A119.4
C5—N1—C1—C2172.4 (3)N1—C5—C6—C954.4 (3)
C4—N1—C1—C28.5 (3)C7—C6—C9—C14170.0 (2)
N1—C1—C2—C39.5 (4)C8—C6—C9—C1470.1 (3)
C1—C2—C3—C47.0 (4)C5—C6—C9—C1447.7 (3)
C5—N1—C4—C3176.3 (2)C7—C6—C9—C1013.0 (3)
C1—N1—C4—C34.6 (3)C8—C6—C9—C10106.8 (3)
C2—C3—C4—N11.3 (4)C5—C6—C9—C10135.4 (2)
C4—N1—C5—O10.5 (4)C14—C9—C10—C110.2 (4)
C1—N1—C5—O1179.4 (3)C6—C9—C10—C11176.8 (2)
C4—N1—C5—C6178.8 (2)C9—C10—C11—C120.3 (4)
C1—N1—C5—C62.2 (4)C10—C11—C12—C130.3 (5)
O1—C5—C6—C7107.0 (3)C11—C12—C13—C140.3 (5)
N1—C5—C6—C771.3 (3)C10—C9—C14—C130.2 (4)
O1—C5—C6—C810.0 (3)C6—C9—C14—C13176.9 (3)
N1—C5—C6—C8171.7 (2)C12—C13—C14—C90.2 (4)
O1—C5—C6—C9127.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.583.510 (4)160
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.583.510 (4)160
Symmetry code: (i) x, y+1/2, z+1/2.
Acknowledgements top

This study was financially supported by Scientific Research Project of Beijing Education Commission and the Scientific Research Level Project of Beijing Education Commission Foundation. The authors thank the Center of Testing and Analysis, Beijing University of Science and Technology.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Richard, C. K., Robert, M. S., Carey, L. S., et al. (1995). WO Patent No. 9500480. Please check authors' names. Correct format is Family name, Initial(s). These look like first names. Give names of all authors.

Richard, C. K., Robert, M. S., Carey, L. S., et al. (2001). US Patent No. 6242606. Please check authors' names. Correct format is Family name, Initial(s). These look like first names. Give names of all authors.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.