supplementary materials


bt6890 scheme

Acta Cryst. (2013). E69, m255-m256    [ doi:10.1107/S1600536813009203 ]

catena-Poly[[(1,10-phenanthroline-[kappa]2N,N')copper(II)]-[mu]-2,2'-iminodibenzoato-[kappa]4O,O':O'',O''']

C. Yuste-Vivas, J. T. Coutinho, L. C. J. Pereira and M. R. Silva

Abstract top

The structure of the title compound, [Cu(C14H9NO4)(C12H8N2)]n, consists of zigzag polymeric chains along the c axis. The asymmetric unit contains one CuII atom which is coordinated by one 2,2'-iminodibenzoate ligand and a one phenanthroline unit. Two intramolecular N-H...O hydrogen bonds occur. The supramolecular structure is characterized by weak C-H...O hydrogen bonds and [pi]-[pi] stacking interactions, forming a three-dimensional supramolecular network. The shortest centroid-centroid distances between neighbouring phenanthroline aromatic rings and 2,2'-iminodibenzoate rings are 3.684 (1) and 3.640 Å, respectively. The shortest intrachain Cu...Cu distance is 7.2885 (9) and the shortest Cu...Cu distance between Cu atoms in different chains is 7.1103 (6) Å.

Comment top

This work is part of a project of synthesizing low dimensional polynuclear magnetic materials with Copper(II) and oxygen-donors bridging ligands (Fabelo et al., 2009; Martins et al., 2008a; Martins et al., 2008b; Silva et al., 2001; Yuste et al., 2007, 2008).

The target of this work is the use of an aromatic dicarboxylic acid, such as the 2,2'-iminodibenzoic acid, (H2IDC) and another quelate, known as ''coligand'' that will block some coordination positions of the Copper(II) metal ion, modulating the dimensionality of the resulting compound. (Gao et al., 2009; Lin et al., 2006; Yuste et al., 2008).

The structure of this compound consists of neutral chains of formula [Cu(C14H9NO4)(C12H8N2)]n, growing along the c-axis, in a zigzag mode, where the 2,2'-iminodibenzoate (IDC2-) units act as linkers between two Cu(II) ions, in a bis-bidentate mode, and the phenanthroline molecules are placed out-of-chain. The whole compound adopts a three dimensional supramolecular structure by weak π-π stacking. The shortest intra- and interchain copper···copper distances are 7.2885 (9) Å [Cu1···Cu1i; (i) = x, 1 - y, -1/2 + z] and 7.1103 (6) Å [Cu1···Cu1v; (v) = 1/2 - x, 1/2 - y, 1 - z], respectively.

The Copper(II) ion shows a distorted octahedral environment, CuN2O4, due to the Jahn-Teller effect. The equatorial positions are occupied by the two nitrogen atoms from the phenanthroline ligand, [N1 and N2], and two oxygen atoms [O1 and O4], from two different carboxylate units of the IDC2- ligand, varying the distances in a very narrow range of [1.940–2.026 Å]. Another two oxygen atoms [O2 and O3], with bond length values 2.618 (2) and 2.438 (3) Å respectively, are placed in the axial positions. The 2,2'-iminodibenzoate links two neighboring Copper(II) metal ions, being the bite angle 55.19 (11)° [O1—Cu1—O2] and 58.92 (11)° [O3—Cu1ii—O4]. [(ii) = x, -y, -1/2 + z]. The ligand is not planar, with a maximum deviation of 1.472 (5) Å for C10 from the mean plane, being the dihedral angle between the two aromatic rings 52.25 (3)°, which is greater than those already reported (Field et al., 2002; Gao et al., 2009).

Intramolecular hydrogen bond interactions exist inside the 2,2'-iminodibenzoate unit between the nitrogen atom [N1] from the amino group and two oxygen atoms [O2 and O3] from the carboxylate groups. The intermolecular π-π stacking interaction exists in between two aromatic rings of two neighbor phenantrolines and also between the aromatic rings of two neighbor 2,2'-iminodibenzoate moieties. These weak π-π interactions, stabilize the crystal structure of the complex. The shortest distances 'centroid-to-centroid' between neighbor aromatic ring of two phenantrolines and two neighbor 2,2'-iminodibenzoate are 3.684 (1) and 3.640 Å respectively.

Related literature top

For general background to CuII low-dimensional polynuclear magnetic materials, see: Fabelo et al. (2009); Martins et al. (2008a,b); Silva et al. (2001); Yuste et al. (2007, 2008). For structural and coordination information for 2,2'-iminodibenzoic acid, see: Field & Venkataraman (2002); Gao et al. (2009); Lin et al. (2006).

Experimental top

All the reagents, phenanthroline, 2,2'-Iminodibenzoic acid, and the metallic salt Cu(NO3)2.3H2O, were purchased from commercial sources and used as received with no further purifications.

An aqueous solution containing Cu(NO3)2.3H2O (1 mmol, 0.0242 g), Iminodibenzoic acid (1 mmol, 0.0257 g) and phenanthroline, ((2 mmol, 0.0361 g), was stirred during 30 minutes and placed in a 25 mL Teflon-lined autoclave and then heated at 120°C during 48 h. Dark green crystals were obtained by filtration, washed with water and dried in air. Ca. 36% yield based on Cu.

Refinement top

All H atoms could be located in a difference Fourier synthesis but were placed in calculated positions and refined as riding on their parent atoms, using SHELXL (Sheldrick, 2008) defaults.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x, 1 - y, 1/2 - z; (ii) x, 1 - y, 1/2 + z.]
[Figure 2] Fig. 2. : View of the crystal packing of the title compound, projected along c.
[Figure 3] Fig. 3. : A view showing part of the three-dimensional supramolecular network linked by weak π-π stacking interactions (yellow dotted lines).
catena-Poly[[(1,10-phenanthroline-κ2N,N')copper(II)]-µ-2,2'-iminodibenzoato-κ4O,O':O'',O'''] top
Crystal data top
[Cu(C14H9NO4)(C12H8N2)]F(000) = 2040
Mr = 498.98Dx = 1.592 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6606 reflections
a = 31.7536 (6) Åθ = 2.2–20.8°
b = 9.8492 (2) ŵ = 1.09 mm1
c = 14.4865 (3) ÅT = 293 K
β = 113.222 (1)°Blocks, green
V = 4163.56 (14) Å30.1 × 0.08 × 0.07 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3976 independent reflections
Radiation source: fine-focus sealed tube2900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 25.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3838
Tmin = 0.898, Tmax = 0.971k = 1212
36778 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.037P)2 + 5.032P]
where P = (Fo2 + 2Fc2)/3
3976 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C14H9NO4)(C12H8N2)]V = 4163.56 (14) Å3
Mr = 498.98Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.7536 (6) ŵ = 1.09 mm1
b = 9.8492 (2) ÅT = 293 K
c = 14.4865 (3) Å0.1 × 0.08 × 0.07 mm
β = 113.222 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3976 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2900 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.971Rint = 0.061
36778 measured reflectionsθmax = 25.8°
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.40 e Å3
3976 reflectionsAbsolute structure: ?
307 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.172485 (11)0.45882 (4)0.30778 (3)0.03710 (12)
N10.07823 (8)0.7287 (3)0.46195 (18)0.0466 (6)
H10.10210.67810.48820.056*
N20.20508 (7)0.2788 (2)0.35164 (16)0.0361 (5)
N30.23714 (7)0.5223 (2)0.34707 (17)0.0370 (5)
O40.11136 (6)0.6223 (2)0.75794 (15)0.0448 (5)
O10.14757 (7)0.6413 (2)0.27927 (16)0.0479 (5)
O20.14659 (7)0.6025 (2)0.42821 (15)0.0495 (5)
O30.13160 (6)0.5939 (2)0.63028 (15)0.0441 (5)
C10.13485 (9)0.6710 (3)0.3501 (2)0.0387 (7)
C20.10555 (8)0.7946 (3)0.3344 (2)0.0361 (7)
C30.10490 (9)0.8884 (3)0.2622 (2)0.0444 (7)
H30.12170.87030.22370.053*
C40.08029 (11)1.0071 (3)0.2458 (3)0.0539 (9)
H40.07981.06700.19570.065*
C50.05662 (10)1.0354 (3)0.3043 (3)0.0560 (9)
H50.04141.11790.29670.067*
C60.05500 (10)0.9437 (3)0.3744 (3)0.0528 (8)
H60.03790.96410.41200.063*
C70.07871 (9)0.8197 (3)0.3902 (2)0.0384 (7)
C80.04358 (9)0.7090 (3)0.4972 (2)0.0414 (7)
C90.00235 (10)0.7313 (4)0.4351 (3)0.0537 (9)
H90.00990.76590.37080.064*
C100.03645 (10)0.7024 (4)0.4680 (3)0.0603 (10)
H100.06690.71520.42490.072*
C110.02635 (10)0.6550 (4)0.5636 (3)0.0605 (10)
H110.04970.63720.58550.073*
C120.01899 (10)0.6343 (3)0.6269 (3)0.0492 (8)
H120.02620.60320.69190.059*
C130.05402 (9)0.6595 (3)0.5942 (2)0.0383 (7)
C140.10206 (9)0.6238 (3)0.6641 (2)0.0381 (7)
C150.18760 (10)0.1574 (3)0.3531 (2)0.0440 (7)
H150.15610.14940.33410.053*
C160.21466 (11)0.0407 (3)0.3820 (2)0.0502 (8)
H160.20120.04320.38220.060*
C170.26097 (11)0.0504 (3)0.4102 (2)0.0500 (8)
H170.27930.02660.42990.060*
C180.28067 (10)0.1772 (3)0.4090 (2)0.0421 (7)
C190.32883 (10)0.2002 (4)0.4383 (2)0.0519 (8)
H190.34910.12730.45800.062*
C200.34496 (10)0.3263 (4)0.4376 (2)0.0515 (8)
H200.37640.33880.45820.062*
C210.31555 (9)0.4409 (3)0.4063 (2)0.0409 (7)
C220.32977 (11)0.5755 (4)0.4042 (2)0.0516 (9)
H220.36070.59480.42290.062*
C230.29850 (11)0.6773 (3)0.3750 (2)0.0523 (8)
H230.30800.76640.37370.063*
C240.25214 (10)0.6482 (3)0.3469 (2)0.0454 (7)
H240.23110.71900.32740.055*
C250.26837 (9)0.4207 (3)0.3767 (2)0.0357 (6)
C260.25100 (9)0.2879 (3)0.3789 (2)0.0351 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03325 (18)0.0380 (2)0.0386 (2)0.00164 (16)0.01251 (14)0.00015 (17)
N10.0341 (13)0.0582 (17)0.0465 (16)0.0182 (12)0.0148 (11)0.0099 (13)
N20.0334 (12)0.0379 (14)0.0331 (13)0.0015 (10)0.0091 (10)0.0031 (11)
N30.0373 (12)0.0364 (14)0.0364 (13)0.0009 (11)0.0137 (10)0.0022 (11)
O40.0373 (10)0.0534 (13)0.0395 (12)0.0011 (10)0.0106 (9)0.0050 (10)
O10.0541 (12)0.0437 (12)0.0529 (13)0.0095 (10)0.0286 (11)0.0050 (11)
O20.0522 (12)0.0514 (13)0.0428 (13)0.0222 (10)0.0166 (10)0.0085 (11)
O30.0325 (10)0.0517 (13)0.0484 (13)0.0064 (9)0.0162 (9)0.0097 (10)
C10.0311 (14)0.0354 (16)0.0434 (18)0.0016 (12)0.0081 (13)0.0023 (14)
C20.0276 (13)0.0328 (16)0.0384 (16)0.0010 (11)0.0029 (12)0.0023 (13)
C30.0379 (15)0.0434 (18)0.0443 (18)0.0045 (14)0.0081 (13)0.0003 (15)
C40.0439 (17)0.0402 (18)0.063 (2)0.0025 (14)0.0055 (16)0.0098 (16)
C50.0418 (17)0.0348 (18)0.071 (2)0.0068 (15)0.0001 (16)0.0034 (18)
C60.0398 (16)0.051 (2)0.059 (2)0.0143 (15)0.0105 (15)0.0053 (17)
C70.0285 (14)0.0407 (17)0.0370 (17)0.0064 (12)0.0033 (12)0.0004 (14)
C80.0330 (15)0.0418 (17)0.0445 (18)0.0066 (13)0.0101 (13)0.0051 (14)
C90.0355 (16)0.067 (2)0.052 (2)0.0124 (15)0.0096 (14)0.0008 (17)
C100.0299 (16)0.072 (3)0.069 (3)0.0086 (16)0.0089 (16)0.005 (2)
C110.0356 (17)0.068 (2)0.083 (3)0.0017 (16)0.0282 (17)0.006 (2)
C120.0401 (16)0.052 (2)0.056 (2)0.0007 (15)0.0197 (15)0.0052 (16)
C130.0289 (14)0.0340 (16)0.0484 (18)0.0012 (12)0.0113 (12)0.0069 (14)
C140.0334 (15)0.0320 (16)0.0460 (19)0.0047 (12)0.0125 (13)0.0006 (14)
C150.0420 (16)0.0425 (19)0.0415 (18)0.0063 (14)0.0100 (13)0.0033 (14)
C160.064 (2)0.0330 (17)0.0458 (18)0.0072 (16)0.0138 (15)0.0010 (15)
C170.060 (2)0.0400 (18)0.0423 (18)0.0115 (16)0.0119 (15)0.0002 (15)
C180.0449 (16)0.0439 (18)0.0341 (17)0.0076 (14)0.0120 (13)0.0006 (14)
C190.0391 (17)0.064 (2)0.050 (2)0.0151 (16)0.0141 (14)0.0007 (17)
C200.0322 (15)0.073 (2)0.050 (2)0.0047 (16)0.0167 (14)0.0047 (18)
C210.0343 (14)0.056 (2)0.0358 (16)0.0040 (14)0.0170 (12)0.0041 (15)
C220.0399 (17)0.070 (2)0.048 (2)0.0164 (16)0.0203 (14)0.0093 (17)
C230.060 (2)0.050 (2)0.051 (2)0.0174 (17)0.0258 (16)0.0057 (16)
C240.0505 (18)0.0392 (18)0.0472 (19)0.0048 (14)0.0200 (15)0.0043 (15)
C250.0356 (14)0.0425 (17)0.0295 (15)0.0012 (12)0.0135 (12)0.0031 (12)
C260.0361 (14)0.0399 (16)0.0284 (15)0.0021 (12)0.0117 (12)0.0006 (13)
Geometric parameters (Å, º) top
Cu1—O11.942 (2)C8—C131.397 (4)
Cu1—O4i1.9548 (19)C9—C101.375 (4)
Cu1—N32.002 (2)C9—H90.9300
Cu1—N22.025 (2)C10—C111.374 (5)
Cu1—O3i2.4360 (19)C10—H100.9300
Cu1—C14i2.515 (3)C11—C121.383 (4)
N1—C71.377 (4)C11—H110.9300
N1—C81.398 (4)C12—C131.392 (4)
N1—H10.8600C12—H120.9300
N2—C151.322 (4)C13—C141.503 (4)
N2—C261.355 (3)C14—Cu1ii2.515 (3)
N3—C241.329 (4)C15—C161.397 (4)
N3—C251.354 (3)C15—H150.9300
O4—C141.272 (3)C16—C171.366 (4)
O4—Cu1ii1.9548 (19)C16—H160.9300
O1—C11.276 (3)C17—C181.399 (4)
O2—C11.241 (3)C17—H170.9300
O3—C141.253 (3)C18—C261.393 (4)
O3—Cu1ii2.4360 (19)C18—C191.435 (4)
C1—C21.494 (4)C19—C201.345 (5)
C2—C31.389 (4)C19—H190.9300
C2—C71.409 (4)C20—C211.421 (4)
C3—C41.373 (4)C20—H200.9300
C3—H30.9300C21—C251.400 (4)
C4—C51.366 (5)C21—C221.404 (4)
C4—H40.9300C22—C231.357 (4)
C5—C61.374 (5)C22—H220.9300
C5—H50.9300C23—C241.394 (4)
C6—C71.406 (4)C23—H230.9300
C6—H60.9300C24—H240.9300
C8—C91.397 (4)C25—C261.425 (4)
O1—Cu1—O4i92.16 (9)C11—C10—C9121.2 (3)
O1—Cu1—N393.31 (9)C11—C10—H10119.4
O4i—Cu1—N3171.94 (9)C9—C10—H10119.4
O1—Cu1—N2172.92 (9)C10—C11—C12119.1 (3)
O4i—Cu1—N293.93 (9)C10—C11—H11120.5
N3—Cu1—N281.03 (9)C12—C11—H11120.5
O1—Cu1—O3i88.28 (8)C11—C12—C13120.7 (3)
O4i—Cu1—O3i58.99 (7)C11—C12—H12119.6
N3—Cu1—O3i115.25 (8)C13—C12—H12119.6
N2—Cu1—O3i97.95 (8)C12—C13—C8120.0 (3)
O1—Cu1—C14i88.22 (9)C12—C13—C14117.6 (3)
O4i—Cu1—C14i29.85 (8)C8—C13—C14122.3 (2)
N3—Cu1—C14i144.48 (9)O3—C14—O4121.4 (2)
N2—Cu1—C14i98.86 (9)O3—C14—C13120.6 (3)
O3i—Cu1—C14i29.27 (8)O4—C14—C13118.0 (2)
C7—N1—C8127.7 (2)O3—C14—Cu1ii71.87 (15)
C7—N1—H1116.1O4—C14—Cu1ii49.89 (13)
C8—N1—H1116.1C13—C14—Cu1ii165.6 (2)
C15—N2—C26117.7 (2)N2—C15—C16122.5 (3)
C15—N2—Cu1129.13 (19)N2—C15—H15118.8
C26—N2—Cu1113.09 (18)C16—C15—H15118.8
C24—N3—C25118.2 (2)C17—C16—C15119.6 (3)
C24—N3—Cu1128.2 (2)C17—C16—H16120.2
C25—N3—Cu1113.59 (18)C15—C16—H16120.2
C14—O4—Cu1ii100.26 (16)C16—C17—C18119.5 (3)
C1—O1—Cu1105.80 (18)C16—C17—H17120.2
C14—O3—Cu1ii78.86 (16)C18—C17—H17120.2
O2—C1—O1122.2 (3)C26—C18—C17116.8 (3)
O2—C1—C2121.8 (3)C26—C18—C19118.6 (3)
O1—C1—C2116.0 (3)C17—C18—C19124.5 (3)
C3—C2—C7118.8 (3)C20—C19—C18120.5 (3)
C3—C2—C1118.7 (3)C20—C19—H19119.7
C7—C2—C1122.4 (3)C18—C19—H19119.7
C4—C3—C2122.4 (3)C19—C20—C21122.1 (3)
C4—C3—H3118.8C19—C20—H20118.9
C2—C3—H3118.8C21—C20—H20118.9
C5—C4—C3118.7 (3)C25—C21—C22116.2 (3)
C5—C4—H4120.6C25—C21—C20118.3 (3)
C3—C4—H4120.6C22—C21—C20125.5 (3)
C4—C5—C6121.0 (3)C23—C22—C21120.2 (3)
C4—C5—H5119.5C23—C22—H22119.9
C6—C5—H5119.5C21—C22—H22119.9
C5—C6—C7121.1 (3)C22—C23—C24119.8 (3)
C5—C6—H6119.4C22—C23—H23120.1
C7—C6—H6119.4C24—C23—H23120.1
N1—C7—C6121.6 (3)N3—C24—C23122.0 (3)
N1—C7—C2120.6 (2)N3—C24—H24119.0
C6—C7—C2117.8 (3)C23—C24—H24119.0
C9—C8—C13118.5 (3)N3—C25—C21123.6 (3)
C9—C8—N1121.0 (3)N3—C25—C26116.4 (2)
C13—C8—N1120.5 (2)C21—C25—C26120.1 (3)
C10—C9—C8120.6 (3)N2—C26—C18123.8 (3)
C10—C9—H9119.7N2—C26—C25115.8 (2)
C8—C9—H9119.7C18—C26—C25120.3 (2)
O1—Cu1—N2—C15142.7 (7)C11—C12—C13—C14175.1 (3)
O4i—Cu1—N2—C156.5 (3)C9—C8—C13—C120.3 (4)
N3—Cu1—N2—C15179.8 (3)N1—C8—C13—C12177.0 (3)
O3i—Cu1—N2—C1565.8 (3)C9—C8—C13—C14175.9 (3)
C14i—Cu1—N2—C1536.2 (3)N1—C8—C13—C140.8 (4)
O1—Cu1—N2—C2640.2 (8)Cu1ii—O3—C14—O46.4 (2)
O4i—Cu1—N2—C26170.57 (18)Cu1ii—O3—C14—C13172.1 (3)
N3—Cu1—N2—C263.10 (18)Cu1ii—O4—C14—O37.9 (3)
O3i—Cu1—N2—C26111.35 (18)Cu1ii—O4—C14—C13170.6 (2)
C14i—Cu1—N2—C26140.93 (18)C12—C13—C14—O3152.6 (3)
O1—Cu1—N3—C241.7 (3)C8—C13—C14—O323.8 (4)
O4i—Cu1—N3—C24130.9 (6)C12—C13—C14—O426.0 (4)
N2—Cu1—N3—C24177.4 (3)C8—C13—C14—O4157.7 (3)
O3i—Cu1—N3—C2488.0 (3)C12—C13—C14—Cu1ii4.3 (10)
C14i—Cu1—N3—C2489.9 (3)C8—C13—C14—Cu1ii172.1 (7)
O1—Cu1—N3—C25178.62 (19)C26—N2—C15—C160.4 (4)
O4i—Cu1—N3—C2548.8 (7)Cu1—N2—C15—C16177.4 (2)
N2—Cu1—N3—C252.88 (18)N2—C15—C16—C170.0 (5)
O3i—Cu1—N3—C2591.73 (19)C15—C16—C17—C180.4 (5)
C14i—Cu1—N3—C2589.8 (2)C16—C17—C18—C260.3 (4)
O4i—Cu1—O1—C177.83 (18)C16—C17—C18—C19179.0 (3)
N3—Cu1—O1—C1108.10 (18)C26—C18—C19—C200.6 (5)
N2—Cu1—O1—C171.5 (8)C17—C18—C19—C20178.1 (3)
O3i—Cu1—O1—C1136.70 (18)C18—C19—C20—C211.3 (5)
C14i—Cu1—O1—C1107.42 (18)C19—C20—C21—C250.8 (5)
Cu1—O1—C1—O213.4 (3)C19—C20—C21—C22179.5 (3)
Cu1—O1—C1—C2167.57 (18)C25—C21—C22—C230.2 (4)
O2—C1—C2—C3160.8 (3)C20—C21—C22—C23178.4 (3)
O1—C1—C2—C318.2 (4)C21—C22—C23—C240.1 (5)
O2—C1—C2—C719.0 (4)C25—N3—C24—C230.7 (4)
O1—C1—C2—C7162.0 (3)Cu1—N3—C24—C23179.0 (2)
C7—C2—C3—C42.3 (4)C22—C23—C24—N30.4 (5)
C1—C2—C3—C4177.5 (3)C24—N3—C25—C210.5 (4)
C2—C3—C4—C51.8 (4)Cu1—N3—C25—C21179.2 (2)
C3—C4—C5—C63.9 (5)C24—N3—C25—C26178.0 (3)
C4—C5—C6—C71.9 (5)Cu1—N3—C25—C262.2 (3)
C8—N1—C7—C629.3 (5)C22—C21—C25—N30.1 (4)
C8—N1—C7—C2154.7 (3)C20—C21—C25—N3178.8 (3)
C5—C6—C7—N1178.4 (3)C22—C21—C25—C26178.4 (3)
C5—C6—C7—C22.3 (4)C20—C21—C25—C260.3 (4)
C3—C2—C7—N1179.6 (2)C15—N2—C26—C180.5 (4)
C1—C2—C7—N10.6 (4)Cu1—N2—C26—C18178.0 (2)
C3—C2—C7—C64.2 (4)C15—N2—C26—C25179.7 (3)
C1—C2—C7—C6175.5 (2)Cu1—N2—C26—C252.8 (3)
C7—N1—C8—C930.5 (5)C17—C18—C26—N20.2 (4)
C7—N1—C8—C13152.8 (3)C19—C18—C26—N2178.6 (3)
C13—C8—C9—C101.3 (5)C17—C18—C26—C25179.3 (3)
N1—C8—C9—C10175.4 (3)C19—C18—C26—C250.6 (4)
C8—C9—C10—C112.0 (5)N3—C25—C26—N20.4 (4)
C9—C10—C11—C121.0 (5)C21—C25—C26—N2178.2 (2)
C10—C11—C12—C130.7 (5)N3—C25—C26—C18179.6 (2)
C11—C12—C13—C81.3 (5)C21—C25—C26—C181.0 (4)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.072.708 (5)131
N1—H1···O30.862.062.701 (5)130
C17—H17···O2iii0.932.553.308 (4)139
C23—H23···O3iv0.932.383.185 (4)145
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.072.708 (5)131
N1—H1···O30.862.062.701 (5)130
C17—H17···O2i0.932.553.308 (4)139
C23—H23···O3ii0.932.383.185 (4)145
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.
Acknowledgements top

This work was supported by the Fundo Europeu de Desenvolvimento Regional-QREN-Compete through projects PTDC/FIS/102284/2008 and PEst-C/FIS/UI0036/2011 – Fundação para a Ciência e Tecnologia (FCT).

references
References top

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsconsin, USA.

Fabelo, O., Pasán, J., Cañadillas-Delgado, L., Delgado, F. S., Yuste, C., Lloret, F., Julve, M. & Ruiz-Perez, C. (2009). CrystEngComm, 11, 2169–2179.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Field, J. E. & Venkataraman, D. (2002). Chem. Commun. pp. 306–307.

Gao, E., Huang, Y., Zhu, M., Wang, L., Liu, F., Liu, H., Ma, S., Shi, Q., Wang, N. & Shi, C. (2009). Inorg. Chem. Commun. 12, 872–874.

Lin, Y.-Y., Chen, Z.-Y., Yu, X.-L. & Chen, X.-M. (2006). Wuji Huaxue Xuebao, 22, 1467-1470

Martins, N. D., Silva, J. A., Ramos Silva, M., Matos Beja, A. & Sobral, A. J. F. N. (2008a). Acta Cryst. E64, m394.

Martins, N. D., Ramos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2008b). Acta Cryst. E64, m829–m830

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Silva, M. R., Paixão, J. A., Matos Beja, A., Alte da Beja, L. & Martin-Gil, J. (2001). J. Chem. Crystallogr. 31, 167–171.

Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Perez, C., Rilema, P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 1583–1596.

Yuste, C., Bentama, A. S.-E., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190–5200.