[Journal logo]

Volume 69 
Part 5 
Page o669  
May 2013  

Received 23 March 2013
Accepted 1 April 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.002 Å
R = 0.025
wR = 0.072
Data-to-parameter ratio = 29.6
Details
Open access

Ethylenediammonium chloride thiocyanate

aLaboratoire de Génie des Matériaux et Environnement, École Nationale d'Ingénieurs de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Université de Brest, 6, Avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France
Correspondence e-mail: slah.kamoun@gmail.com

In the ethylenediammonium dication of the title salt, C2H10N22+·Cl-·SCN-, the N-C-C-N torsion angle is 72.09 (12)°. In the crystal, an extensive three-dimensional hydrogen-bonding network, formed by N-H...Cl and N-H...N hydrogen bonds, holds all the ions together.

Related literature

For the crystal structures of related compounds, see: Kamoun et al. (1989[Kamoun, S., Jouini, A., Kamoun, M. & Daoud, A. (1989). Acta Cryst. C45, 481-482.]); Chen (2009[Chen, L.-Z. (2009). Acta Cryst. E65, o2625.]). For details of the synthesis of thiocyanic acid, see: Bartlett et al. (1969[Bartlett, H. E., Jurriaanse, A. & De Haas, K. (1969). Can. J. Chem. 47, 16, 2981-2986.]). For protonic conductivity and dielectric relaxation in ethylendiammonium salts, see: Karoui et al. (2013[Karoui, S., Kamoun, S. & Jouini, A. (2013). J. Solid State Chem. 197, 60-68.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·Cl-·SCN-

  • Mr = 155.65

  • Triclinic, [P \overline 1]

  • a = 6.2726 (2) Å

  • b = 6.3462 (2) Å

  • c = 9.1745 (3) Å

  • [alpha] = 92.436 (3)°

  • [beta] = 92.193 (3)°

  • [gamma] = 94.341 (3)°

  • V = 363.52 (2) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.72 mm-1

  • T = 293 K

  • 0.50 × 0.42 × 0.17 mm

Data collection
  • Agilent Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.737, Tmax = 0.887

  • 6396 measured reflections

  • 2189 independent reflections

  • 1947 reflections with I > 2[sigma](I)

  • Rint = 0.018

Refinement
  • R[F2 > 2[sigma](F2)] = 0.025

  • wR(F2) = 0.072

  • S = 1.08

  • 2189 reflections

  • 74 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.40 e Å-3

  • [Delta][rho]min = -0.25 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N2-H2A...Cl1i 0.89 2.36 3.1982 (9) 158
N2-H2B...Cl1ii 0.89 2.35 3.2246 (10) 169
N2-H2C...Cl1iii 0.89 2.64 3.3237 (10) 134
N3-H3C...Cl1iii 0.89 2.46 3.2953 (11) 158
N3-H3A...N1iv 0.89 2.03 2.8533 (14) 153
N2-H2C...Cl1 0.89 2.64 3.3543 (10) 138
N3-H3B...N1 0.89 2.27 3.1106 (17) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg et al., 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5396 ).


Acknowledgements

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
Bartlett, H. E., Jurriaanse, A. & De Haas, K. (1969). Can. J. Chem. 47, 16, 2981-2986.
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chen, L.-Z. (2009). Acta Cryst. E65, o2625.  [CSD] [CrossRef] [details]
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.  [CrossRef] [ChemPort] [details]
Kamoun, S., Jouini, A., Kamoun, M. & Daoud, A. (1989). Acta Cryst. C45, 481-482.  [CrossRef] [details]
Karoui, S., Kamoun, S. & Jouini, A. (2013). J. Solid State Chem. 197, 60-68.  [ISI] [CrossRef] [ChemPort]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o669  [ doi:10.1107/S1600536813008830 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.