supplementary materials


cv5401 scheme

Acta Cryst. (2013). E69, o703-o704    [ doi:10.1107/S1600536813009288 ]

3-(4-Methoxyphenyl)-1,3-selenazolo[2,3-b][1,3]benzothiazol-4-ium hydrogen sulfate

G. Z. Mammadova, Z. V. Matsulevich, G. N. Borisova, A. V. Borisov and V. N. Khrustalev

Abstract top

The title compound, C16H12NOSSe+·HSO4-, was obtained from a mixture of 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium chloride and potassium hydrogen sulfate. In the cation, the benzene ring is twisted by 71.62 (7)° from the tricycle mean plane. In the crystal, O-H...O hydrogen bonds link the anions into chains along [100]. The anions in adjacent chains are linked via weak C-H...O hydrogen bonds. The crystal packing exhibits short intermolecular contacts between the chalcogen unit and the O atoms: Se...O(anion) 2.713 (3), Se...O(cation) 2.987 (3) and S...O(anion) 2.958 (3) Å.

Comment top

In the last years, the selenium- and nitrogen-containing heterocycles have attracted considerable attention owing to the variety of their pharmacological properties (Back, 2009; Mlochowski & Giurg, 2009; Mukherjee et al., 2010; Selvakumar et al., 2010). This article describes the structure of 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium hydrogen sulfate, [C16H12NOSSe]+.[HSO4]-, (I), which was obtained by the reaction of 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium chloride (Borisov et al., 2012) with potassium hydrogen sulfate (Figure 1).

The compound I is a salt consisting of 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium cation and hydrogen sulfate anion (Figure 2). The cation of I comprises a fused tricyclic system containing two five-membered rings (1,3-selenazole and 1,3-thiazole) and one six-membered ring (benzene). The tricyclic system is practically planar (r.m.s deviation = 0.020 Å). The methoxy group is almost coplanar to the plane of the phenyl substituent (the C12—C13—O1—C16 torsion angle is 1.7 (5)°). The dihedral angle between the mean planes of the tricyclic system and methoxyphenyl fragment is 71.82 (6)°.

In the crystal, anions form chains along the a axis through the intermolecular O—H···O hydrogen bonding interactions (Table 1, Figure 3). Weak intermolecular C—H···O hydrogen bonds (Table 1, Figure 3) as well as non-valent attractive Se···O (Se1···O3b 2.713 (3), Se1···O1c 2.987 (3), Se1···O3 3.366 (3), Se1···O5b 3.423 (3) Å) and S···O [S9···O2a 2.958 (3) and S9···O1c 3.050 (3) Å] interactions consolidate further the three-dimensional-crystal packing (Figure 3) [symmetry codes: (a) x, y, z + 1; (b) x–1, y, z; (c) –x, y + 0.5, –z + 1].

Related literature top

For details of the synthesis and the biological properties of selenium- and nitrogen-containing heterocycles, see: Back (2009); Mlochowski & Giurg (2009); Mukherjee et al. (2010); Selvakumar et al. (2010). For the synthesis of the starting compound, 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium chloride, see: Borisov et al. (2012).

Experimental top

A mixture of 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium chloride (0.19 g, 0.5 mmol) with KHSO4 (0.072 g, 0.53 mmol) in CH3OH (20 ml) was refluxed for 0.5 h to dissolve the starting materials. After that the reaction mixture was concentrated in vacuo. Then CH2Cl2 (20 ml) was added to the solid to give precipitate of KCl, which was separated by filtration. The filtrate was concentrated in vacuo. The solid was re-crystallized from CH2Cl2 to give I as colorless crystals. Yield is 93%. M.p. = 510–512 K. 1H NMR (DMSO-d6, 600 MHz, 302 K): δ = 8.42 (1H, d, J = 8.0, H8), 8.23 (1H, s, H2), 7.63 (1H, t, J = 8.0, H7), 7.59 (2H, d, J = 8.8, H11, H15), 7.48 (1H, t, J = 8.0, H6), 7.25 (2H, d, J = 8.8, H12, H14), 6.81 (1H, d, J = 8.1, H5), 3.87 (3H, s, OMe). Anal. Calcd. for C16H13NO5S2Se: C, 43.45; H, 2.96; N, 3.17. Found: C, 43.37; H, 2.93; N, 3.12.

Refinement top

The hydroxyl hydrogen atom was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å (CH) and 0.98 Å (CH3) and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 group and 1.2Ueq(C) for the CH groups].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 3-(4-methoxyphenyl)[1,3]selenazolo[2,3-b][1,3]benzothiazol-4-ium chloride with potassium hydrogen sulfate.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A portion of crystal packing of I viewed approximately down the a axis. Dashed lines indicate the intermolecular O—H···O and C—H···O hydrogen bonds as well as the non-valent Se···O and S···O attractive interactions.
3-(4-Methoxyphenyl)-1,3-selenazolo[2,3-b][1,3]benzothiazol-4-ium hydrogen sulfate top
Crystal data top
C16H12NOSSe+·HO4SF(000) = 444
Mr = 442.35Dx = 1.840 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2780 reflections
a = 4.6408 (8) Åθ = 2.2–28.3°
b = 18.263 (3) ŵ = 2.64 mm1
c = 9.4482 (16) ÅT = 100 K
β = 94.294 (3)°Plate, colourless
V = 798.6 (2) Å30.30 × 0.18 × 0.02 mm
Z = 2
Data collection top
Bruker SMART 1K CCD
diffractometer
4145 independent reflections
Radiation source: fine-focus sealed tube3555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 66
Tmin = 0.505, Tmax = 0.949k = 2424
8638 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.001P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4145 reflectionsΔρmax = 0.74 e Å3
227 parametersΔρmin = 0.99 e Å3
1 restraintAbsolute structure: Flack (1983), 2075 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.038 (9)
Crystal data top
C16H12NOSSe+·HO4SV = 798.6 (2) Å3
Mr = 442.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.6408 (8) ŵ = 2.64 mm1
b = 18.263 (3) ÅT = 100 K
c = 9.4482 (16) Å0.30 × 0.18 × 0.02 mm
β = 94.294 (3)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4145 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3555 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.949Rint = 0.052
8638 measured reflectionsθmax = 29.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.74 e Å3
S = 0.97Δρmin = 0.99 e Å3
4145 reflectionsAbsolute structure: Flack (1983), 2075 Friedel pairs
227 parametersFlack parameter: 0.038 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.35253 (8)0.72534 (2)0.59512 (4)0.01626 (9)
C20.3094 (9)0.6448 (2)0.4783 (4)0.0173 (8)
H20.41810.63890.38980.021*
C30.1125 (9)0.5955 (2)0.5288 (4)0.0165 (8)
N40.0200 (7)0.61551 (17)0.6630 (4)0.0147 (7)
C4A0.2352 (8)0.5819 (2)0.7546 (4)0.0149 (8)
C50.3787 (8)0.5164 (2)0.7368 (4)0.0168 (8)
H50.33300.48660.65590.020*
C60.5907 (9)0.4956 (2)0.8401 (4)0.0186 (9)
H60.69110.45080.82960.022*
C70.6596 (9)0.5392 (2)0.9593 (4)0.0182 (8)
H70.80680.52381.02820.022*
C80.5155 (9)0.6048 (2)0.9785 (5)0.0180 (8)
H80.56080.63461.05960.022*
C8A0.3030 (8)0.6250 (2)0.8747 (4)0.0146 (8)
S90.0967 (2)0.70586 (5)0.87325 (11)0.0174 (2)
C9A0.0728 (8)0.6813 (2)0.7133 (4)0.0163 (8)
C100.0297 (8)0.5298 (2)0.4485 (4)0.0158 (8)
C110.1148 (8)0.5411 (2)0.3255 (4)0.0172 (8)
H110.15670.58960.29720.021*
C120.1981 (9)0.4824 (2)0.2441 (4)0.0182 (8)
H120.30040.49080.16220.022*
C130.1307 (8)0.4114 (2)0.2833 (4)0.0156 (8)
C140.0266 (9)0.3998 (2)0.4026 (5)0.0205 (9)
H140.08190.35160.42700.025*
C150.1006 (8)0.4583 (2)0.4841 (4)0.0192 (9)
H150.20190.44980.56630.023*
O10.2001 (6)0.35027 (15)0.2094 (3)0.0199 (6)
C160.3593 (9)0.3608 (2)0.0861 (4)0.0198 (9)
H16A0.39010.31340.04110.030*
H16B0.54660.38330.11450.030*
H16C0.24970.39300.01880.030*
S10.2806 (2)0.78392 (5)0.26484 (11)0.0180 (2)
O20.3759 (7)0.7346 (2)0.1596 (3)0.0333 (8)
O30.2090 (6)0.74833 (15)0.3937 (3)0.0228 (6)
O40.0395 (6)0.83188 (17)0.2081 (3)0.0256 (7)
O50.5298 (6)0.83793 (17)0.3069 (4)0.0277 (7)
H5O0.66340.83700.24130.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01455 (16)0.01458 (16)0.02001 (18)0.00098 (18)0.00359 (13)0.00010 (19)
C20.0167 (19)0.018 (2)0.018 (2)0.0019 (16)0.0052 (16)0.0018 (16)
C30.0159 (19)0.0149 (18)0.019 (2)0.0012 (15)0.0058 (16)0.0005 (16)
N40.0130 (15)0.0124 (15)0.0192 (17)0.0010 (13)0.0049 (13)0.0009 (13)
C4A0.0115 (18)0.0145 (18)0.019 (2)0.0025 (15)0.0036 (15)0.0001 (15)
C50.017 (2)0.0164 (19)0.018 (2)0.0027 (16)0.0047 (16)0.0004 (16)
C60.0153 (19)0.0165 (19)0.025 (2)0.0015 (16)0.0085 (17)0.0024 (17)
C70.0135 (19)0.022 (2)0.019 (2)0.0007 (16)0.0020 (16)0.0031 (17)
C80.016 (2)0.0172 (19)0.021 (2)0.0006 (16)0.0050 (17)0.0012 (17)
C8A0.0156 (19)0.0124 (18)0.016 (2)0.0009 (15)0.0053 (15)0.0010 (15)
S90.0163 (4)0.0168 (5)0.0192 (5)0.0003 (3)0.0028 (4)0.0013 (4)
C9A0.0155 (19)0.0165 (18)0.0175 (19)0.0055 (16)0.0054 (15)0.0042 (16)
C100.0132 (18)0.0137 (18)0.021 (2)0.0009 (15)0.0019 (16)0.0011 (16)
C110.0149 (19)0.0165 (19)0.020 (2)0.0005 (16)0.0007 (16)0.0008 (16)
C120.018 (2)0.019 (2)0.018 (2)0.0002 (16)0.0034 (16)0.0003 (16)
C130.0148 (19)0.0155 (19)0.016 (2)0.0012 (15)0.0000 (15)0.0035 (16)
C140.019 (2)0.018 (2)0.025 (2)0.0031 (17)0.0067 (17)0.0013 (17)
C150.0171 (19)0.021 (2)0.021 (2)0.0022 (16)0.0055 (17)0.0016 (17)
O10.0223 (15)0.0163 (14)0.0223 (15)0.0003 (12)0.0096 (13)0.0003 (12)
C160.021 (2)0.021 (2)0.018 (2)0.0003 (17)0.0067 (17)0.0029 (17)
S10.0164 (5)0.0182 (5)0.0197 (5)0.0014 (4)0.0029 (4)0.0002 (4)
O20.0372 (17)0.036 (2)0.0270 (14)0.0050 (17)0.0053 (13)0.0125 (16)
O30.0204 (15)0.0232 (15)0.0252 (15)0.0021 (12)0.0041 (12)0.0073 (12)
O40.0152 (15)0.0258 (16)0.0353 (18)0.0019 (12)0.0007 (13)0.0102 (14)
O50.0167 (15)0.0263 (17)0.0406 (18)0.0014 (13)0.0064 (14)0.0019 (15)
Geometric parameters (Å, º) top
Se1—C9A1.834 (4)C10—C151.394 (5)
Se1—C21.859 (4)C10—C111.399 (6)
C2—C31.345 (5)C11—C121.391 (6)
C2—H20.9500C11—H110.9500
C3—N41.415 (5)C12—C131.390 (6)
C3—C101.485 (5)C12—H120.9500
N4—C9A1.373 (5)C13—O11.367 (5)
N4—C4A1.412 (5)C13—C141.404 (6)
C4A—C51.385 (5)C14—C151.376 (6)
C4A—C8A1.397 (5)C14—H140.9500
C5—C61.386 (6)C15—H150.9500
C5—H50.9500O1—C161.439 (5)
C6—C71.397 (6)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—C81.391 (6)C16—H16C0.9800
C7—H70.9500S1—O21.436 (3)
C8—C8A1.388 (6)S1—O31.441 (3)
C8—H80.9500S1—O41.489 (3)
C8A—S91.759 (4)S1—O51.549 (3)
S9—C9A1.710 (4)O5—H5O0.9086
C9A—Se1—C284.92 (18)C15—C10—C11118.3 (4)
C3—C2—Se1114.8 (3)C15—C10—C3123.9 (4)
C3—C2—H2122.6C11—C10—C3117.7 (3)
Se1—C2—H2122.6C12—C11—C10121.1 (4)
C2—C3—N4112.5 (4)C12—C11—H11119.5
C2—C3—C10123.7 (4)C10—C11—H11119.5
N4—C3—C10123.7 (3)C11—C12—C13119.6 (4)
C9A—N4—C4A113.2 (3)C11—C12—H12120.2
C9A—N4—C3114.2 (3)C13—C12—H12120.2
C4A—N4—C3132.6 (3)O1—C13—C12124.0 (4)
C5—C4A—C8A120.3 (4)O1—C13—C14116.3 (4)
C5—C4A—N4128.7 (4)C12—C13—C14119.7 (4)
C8A—C4A—N4111.0 (3)C15—C14—C13119.9 (4)
C4A—C5—C6118.3 (4)C15—C14—H14120.0
C4A—C5—H5120.9C13—C14—H14120.0
C6—C5—H5120.9C14—C15—C10121.3 (4)
C5—C6—C7121.3 (4)C14—C15—H15119.4
C5—C6—H6119.4C10—C15—H15119.4
C7—C6—H6119.4C13—O1—C16117.3 (3)
C8—C7—C6120.9 (4)O1—C16—H16A109.5
C8—C7—H7119.6O1—C16—H16B109.5
C6—C7—H7119.6H16A—C16—H16B109.5
C8A—C8—C7117.4 (4)O1—C16—H16C109.5
C8A—C8—H8121.3H16A—C16—H16C109.5
C7—C8—H8121.3H16B—C16—H16C109.5
C8—C8A—C4A121.9 (4)O2—S1—O3113.9 (2)
C8—C8A—S9125.9 (3)O2—S1—O4112.44 (19)
C4A—C8A—S9112.2 (3)O3—S1—O4110.80 (18)
C9A—S9—C8A90.01 (19)O2—S1—O5108.31 (19)
N4—C9A—S9113.6 (3)O3—S1—O5106.59 (18)
N4—C9A—Se1113.5 (3)O4—S1—O5104.13 (18)
S9—C9A—Se1132.9 (2)S1—O5—H5O110.3
C9A—Se1—C2—C30.2 (3)C4A—N4—C9A—S90.3 (4)
Se1—C2—C3—N40.6 (4)C3—N4—C9A—S9178.3 (3)
Se1—C2—C3—C10175.7 (3)C4A—N4—C9A—Se1180.0 (3)
C2—C3—N4—C9A1.3 (5)C3—N4—C9A—Se11.5 (4)
C10—C3—N4—C9A174.9 (4)C8A—S9—C9A—N40.1 (3)
C2—C3—N4—C4A179.5 (4)C8A—S9—C9A—Se1179.6 (3)
C10—C3—N4—C4A3.3 (6)C2—Se1—C9A—N40.9 (3)
C9A—N4—C4A—C5179.1 (4)C2—Se1—C9A—S9178.8 (3)
C3—N4—C4A—C50.9 (7)C2—C3—C10—C15110.1 (5)
C9A—N4—C4A—C8A0.6 (4)N4—C3—C10—C1574.1 (5)
C3—N4—C4A—C8A177.6 (4)C2—C3—C10—C1166.4 (5)
C8A—C4A—C5—C60.5 (6)N4—C3—C10—C11109.4 (4)
N4—C4A—C5—C6177.9 (4)C15—C10—C11—C122.9 (6)
C4A—C5—C6—C70.1 (6)C3—C10—C11—C12179.6 (4)
C5—C6—C7—C80.4 (6)C10—C11—C12—C131.6 (6)
C6—C7—C8—C8A0.2 (6)C11—C12—C13—O1179.2 (4)
C7—C8—C8A—C4A0.3 (6)C11—C12—C13—C141.5 (6)
C7—C8—C8A—S9178.7 (3)O1—C13—C14—C15178.9 (4)
C5—C4A—C8A—C80.7 (6)C12—C13—C14—C153.3 (6)
N4—C4A—C8A—C8177.9 (4)C13—C14—C15—C101.9 (6)
C5—C4A—C8A—S9179.3 (3)C11—C10—C15—C141.2 (6)
N4—C4A—C8A—S90.7 (4)C3—C10—C15—C14177.7 (4)
C8—C8A—S9—C9A178.1 (4)C12—C13—O1—C161.7 (5)
C4A—C8A—S9—C9A0.4 (3)C14—C13—O1—C16179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O4i0.911.802.610 (4)147
C6—H6···O4ii0.952.543.494 (5)178
C8—H8···O2iii0.952.263.022 (5)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O4i0.911.802.610 (4)147
C6—H6···O4ii0.952.543.494 (5)178
C8—H8···O2iii0.952.263.022 (5)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y, z+1.
Acknowledgements top

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

references
References top

Back, T. G. (2009). Can. J. Chem. 87, 1657–1674.

Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. & Borisova, G. N. (2012). Chem. Heterocycl. Compd, 48, 1428–1429.

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Mlochowski, J. & Giurg, M. (2009). In Topics in Heterocyclic Chemistry, edited by R. R. Gupta, Vol. 19, pp. 287–340. Berlin, Heidelberg: Springer-Verlag.

Mukherjee, A. J., Zade, S. S., Singh, H. B. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357–4416.

Selvakumar, K., Singh, H. B. & Butcher, R. J. (2010). Chem. Eur. J. 16, 10576–10591.

Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.