supplementary materials


cv5403 scheme

Acta Cryst. (2013). E69, m283    [ doi:10.1107/S1600536813010441 ]

catena-Poly[[tetraaquacadmium]-[mu]-5,5'-(1,4-phenylene)di(tetrazol-2-ido)-[kappa]2N2:N2']

Q. Dang and H. Caiyun

Abstract top

In the title compound, [Cd(C8H4N8)(H2O)4]n, 5,5'-(1,4-phenylene)di(tetrazol-2-ide) (L) ligands bridge CdII atoms into polymeric chains along [201]. The CdII atom is situated on an inversion centre and is coordinated by two N atoms from two L ligands and by four water O atoms in a distorted octahedral geometry. In the L ligand, the benzene ring resides on an inversion centre and the tetrazole rings are twisted from its plane by 22.3 (1)°. An extensive hydrogen-bonding network formed by classical O-H...N and O-H...O interactions consolidates the crystal packing, linking the poymeric chains into a three-dimensional structure.

Comment top

Over the last decade coordination frameworks with channels or pores have captivated great attention of chemists because of their potential applications in gas storage, separation, ion exchange and catalysis(Yaghi et al., 2003; Kitagawa et al., 2004; Ockwig et al., 2005). 1,4-Bis(tetrazol-5-yl)benzene, firstly synthesized and characterized by Tao et al. (2004), is now widely used for constructing coordination frameworks with channels or pores (Dinca et al., 2006; Ouellette et al., 2009; Liu et al., 2012). This paper concerns the reaction of cadmium(II) and 1,4-bis(tetrazol-5-yl)benzene, and the crystal structure of the product.

In the title compound (Fig. 1), the CdII ion is located at an inversion centre. It has a slightly distorted octahedral coordination geometry formed by four water molecules and two nitrogen atoms from ligands L, where H2L = 1,4-bis(tetrazol-5-yl)benzene. Four oxygen atoms form a planar parallelogram arrangement around the Cd centre, and the other two nitrogen atoms occupy the apical position. Each ligand L coordinates two cadmium atoms in a µ2-bridging mode, thus generating a one-dimension coordination polymer. As far as we known, this coordination mode is currently unknown for L ligand.

In the crystal, polymeric one-dimensional chains are linked via O—H···N hydrogen bonds (Table 1) into a three-dimensional structure. The results show that there are no channels in the crystal structure.

Related literature top

For background to coordination frameworks, see: Yaghi et al. (2003); Kitagawa et al. (2004); Ockwig et al. (2005). For details of the synthesis of 1,4-bis(tetrazole-5-yl)benzene, see: Tao et al. (2004). For the crystal structures of coordination polymers containing the 1,4-bis(tetrazole-5-yl)benzene ligand, see: Dinca et al. (2006); Ouellette et al. (2009); Liu et al. (2012).

Experimental top

Cadmium nitrate tetrahydrate (0.123 g, 0.40 mmol), 1,4-bis(tetrazole-5-yl)benzene (0.042 g, 0.20 mmol) and sodium hydroxide (0.016, 0.40 mmol) were added to 8 ml of water:ammonium hydroxide (v:v=1:1) mixture. The solution was transferred into a Teflon-lined stainless steel autoclave and the autoclave was heated to 393 K and maintained at that temperature for 72 h. After cooling to room temperature, crystals suitable for X-ray diffraction were collected.

Refinement top

Water hydrogen atoms were placed in calculated positions [O—H = 0.85–0.87 Å], and refined as riding, with Uiso(H) = 1.5 Ueq(O). The aromatic H atoms were positioned geometrically [C—H = 0.93 Å], and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric chain in the title compound showing the atomic numbering [symmetry codes: (a) 1-x , 1-y, 1-z; (b) -1-x, 1-y, -z]. Displacement ellipsoids are drawn at the 50% probability level.
catena-Poly[[tetraaquacadmium]-µ-5,5'-(1,4-phenylene)di(tetrazol-2-ido)-κ2N2:N2'] top
Crystal data top
[Cd(C8H4N8)(H2O)4]F(000) = 392
Mr = 396.662013-04-07 # Formatted by publCIF
Monoclinic, P21/nDx = 1.883 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.3188 (4) ÅCell parameters from 739 reflections
b = 11.1525 (14) Åθ = 3.5–29.1°
c = 12.0279 (8) ŵ = 1.59 mm1
β = 101.256 (7)°T = 293 K
V = 699.75 (11) Å3Prism, yellow
Z = 20.25 × 0.20 × 0.15 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1237 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0710 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 513
Tmin = 0.692, Tmax = 0.796l = 1314
2351 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0301P)2]
where P = (Fo2 + 2Fc2)/3
1237 reflections(Δ/σ)max < 0.001
99 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd(C8H4N8)(H2O)4]V = 699.75 (11) Å3
Mr = 396.66Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.3188 (4) ŵ = 1.59 mm1
b = 11.1525 (14) ÅT = 293 K
c = 12.0279 (8) Å0.25 × 0.20 × 0.15 mm
β = 101.256 (7)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1237 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
895 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.796Rint = 0.033
2351 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.62 e Å3
S = 1.05Δρmin = 0.53 e Å3
1237 reflectionsAbsolute structure: ?
99 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.0273 (2)
O10.7271 (6)0.6312 (4)0.4040 (3)0.0365 (10)
H1A0.62610.68590.36960.055*
H1B0.79180.59210.35440.055*
N10.0067 (7)0.5049 (4)0.2701 (3)0.0266 (10)
N40.0598 (8)0.3375 (4)0.1802 (4)0.0369 (12)
C20.2949 (9)0.4694 (5)0.0882 (4)0.0279 (13)
C40.3166 (9)0.4199 (5)0.0197 (4)0.0333 (13)
H40.19330.36580.03350.040*
N20.2066 (7)0.4426 (4)0.3287 (4)0.0327 (11)
C10.0782 (9)0.4371 (5)0.1798 (4)0.0286 (12)
N30.2401 (8)0.3426 (4)0.2768 (4)0.0403 (12)
O20.2732 (8)0.6693 (4)0.5307 (4)0.0659 (14)
H2A0.34840.70380.59140.099*
H2B0.12250.64880.53760.099*
C30.4828 (10)0.5505 (5)0.1061 (4)0.0342 (13)
H30.47240.58490.17730.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0262 (3)0.0279 (3)0.0244 (3)0.0008 (3)0.0036 (2)0.0009 (3)
O10.034 (2)0.041 (3)0.034 (2)0.0078 (17)0.0051 (18)0.0042 (19)
N10.021 (2)0.036 (3)0.019 (2)0.005 (2)0.0059 (17)0.001 (2)
N40.039 (3)0.033 (3)0.031 (3)0.008 (2)0.013 (2)0.005 (2)
C20.023 (3)0.034 (4)0.024 (3)0.003 (2)0.002 (2)0.001 (2)
C40.030 (3)0.036 (4)0.030 (3)0.008 (3)0.004 (2)0.002 (3)
N20.031 (2)0.039 (3)0.025 (2)0.001 (2)0.004 (2)0.001 (2)
C10.027 (3)0.035 (3)0.020 (3)0.000 (3)0.002 (2)0.002 (3)
N30.042 (3)0.036 (3)0.034 (3)0.005 (2)0.014 (2)0.003 (2)
O20.047 (2)0.062 (3)0.084 (4)0.001 (2)0.001 (2)0.019 (3)
C30.039 (3)0.041 (4)0.018 (3)0.006 (3)0.006 (2)0.006 (3)
Geometric parameters (Å, º) top
Cd1—O2i2.309 (4)N4—N31.355 (5)
Cd1—O22.309 (4)C2—C41.394 (7)
Cd1—O12.340 (3)C2—C31.396 (7)
Cd1—O1i2.340 (3)C2—C11.475 (7)
Cd1—N22.416 (4)C4—C3ii1.377 (7)
Cd1—N2i2.416 (4)C4—H40.9300
O1—H1A0.8631N2—N31.307 (6)
O1—H1B0.8625O2—H2A0.8527
N1—C11.328 (6)O2—H2B0.8526
N1—N21.348 (6)C3—C4ii1.377 (7)
N4—C11.331 (6)C3—H30.9300
O2i—Cd1—O2179.999 (1)C4—C2—C3117.9 (5)
O2i—Cd1—O195.51 (15)C4—C2—C1120.6 (4)
O2—Cd1—O184.49 (15)C3—C2—C1121.4 (5)
O2i—Cd1—O1i84.49 (15)C3ii—C4—C2121.3 (5)
O2—Cd1—O1i95.51 (15)C3ii—C4—H4119.4
O1—Cd1—O1i180.0C2—C4—H4119.4
O2i—Cd1—N285.26 (16)N3—N2—N1110.9 (4)
O2—Cd1—N294.74 (16)N3—N2—Cd1120.5 (3)
O1—Cd1—N293.12 (13)N1—N2—Cd1128.4 (3)
O1i—Cd1—N286.88 (13)N1—C1—N4111.9 (4)
O2i—Cd1—N2i94.74 (16)N1—C1—C2124.3 (5)
O2—Cd1—N2i85.26 (16)N4—C1—C2123.8 (5)
O1—Cd1—N2i86.88 (13)N2—N3—N4107.8 (4)
O1i—Cd1—N2i93.12 (13)Cd1—O2—H2A109.5
N2—Cd1—N2i180.0 (3)Cd1—O2—H2B109.1
Cd1—O1—H1A110.2H2A—O2—H2B109.3
Cd1—O1—H1B109.8C4ii—C3—C2120.8 (5)
H1A—O1—H1B108.7C4ii—C3—H3119.6
C1—N1—N2104.0 (4)C2—C3—H3119.6
C1—N4—N3105.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N1iii0.861.932.779 (5)167
O1—H1A···N4iv0.861.992.836 (6)166
O2—H2A···N3i0.852.493.121 (6)131
O2—H2B···O1v0.852.393.035 (6)133
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N1i0.861.932.779 (5)167
O1—H1A···N4ii0.861.992.836 (6)166
O2—H2A···N3iii0.852.493.121 (6)131
O2—H2B···O1iv0.852.393.035 (6)133
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1, y, z.
Acknowledgements top

The author thank the Shanxi Province Science Foundation for Youths (grant No. 2012021008–2), the National Natural Science Foundation of China (grant No. 21101102) and the National Science Fund for Distinguished Young Scholars (grant No. 20925101).

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.

Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.

Dinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904–8913.

Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.

Liu, W. T., Li, J. Y., Ni, Z. P., Bao, X., Ou, Y. C., Leng, J. D., Liu, J. L. & Tong, M. L. (2012). Cryst. Growth Des. 12, 1482–1488.

Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.

Ouellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. (2009). Angew. Chem. Int. Ed. 48, 2140–2143.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tao, J., Ma, Z. J., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 6133–6135.

Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.