supplementary materials


ds2230 scheme

Acta Cryst. (2013). E69, o721    [ doi:10.1107/S1600536813009768 ]

2-(2-Fluorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran

H. D. Choi, P. J. Seo and U. Lee

Abstract top

In the title compound, C21H15FOS, the dihedral angles between the mean plane [r.m.s. deviation = 0.041 (1) Å] of the benzofuran fragment and the pendant 2-fluorophenyl and phenyl rings are 46.09 (3) and 24.34 (5)°, respectively. In the crystal, molecules are linked by weak C-H...[pi] interactions, forming a three-dimensional network.

Comment top

As a part of our continuing study of 3-methylsulfanyl-5-phenyl-1-benzofuran derivatives containing phenyl (Choi et al., 2006) and 3-fluorophenyl (Seo et al., 2011) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.041 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 2-fluorophenyl and phenyl rings are 46.09 (3) and 24.34 (5), respectively. In the crystal structure (Fig. 2), molecules are connected by weak intermolecular C–H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and the C15-C20 2-fluorophenyl ring, respectively).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2006); Seo, et al. (2011).

Experimental top

Zinc chloride (218 mg, 1.6 mmol) was added to a stirred solution of 4-phenylphenol (272 mg, 1.6 mmol) and 2-chloro-2-methylsulfanyl-2'-fluoroacetophenone (350 mg, 1.6 mmol) in dichloromethene (20 mL) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-benzene, 5:2 v/v) to afford the title compound as a colorless solid [yield 51%, m.p. 368-369 K; Rf = 0.63 (hexane-benzene, 5:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H..π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1/2, y + 1/2, - z + 1/2; (ii) - x + 1, - y + 1, - z + 1; (iii) - x + 1/2, y - 1/2, - z + 1/2.]
2-(2-Fluorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran top
Crystal data top
C21H15FOSF(000) = 696
Mr = 334.39Dx = 1.396 Mg m3
Monoclinic, P21/nMelting point = 368–369 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.1257 (2) ÅCell parameters from 7139 reflections
b = 7.4232 (1) Åθ = 2.2–27.4°
c = 19.4212 (3) ŵ = 0.22 mm1
β = 97.319 (1)°T = 173 K
V = 1590.90 (4) Å3Block, colourless
Z = 40.27 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3967 independent reflections
Radiation source: rotating anode3190 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.689, Tmax = 0.746l = 2525
28795 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.4925P]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H15FOSV = 1590.90 (4) Å3
Mr = 334.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1257 (2) ŵ = 0.22 mm1
b = 7.4232 (1) ÅT = 173 K
c = 19.4212 (3) Å0.27 × 0.19 × 0.14 mm
β = 97.319 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3190 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.746Rint = 0.040
28795 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.26 e Å3
3967 reflectionsAbsolute structure: ?
218 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16737 (3)0.90172 (5)0.526490 (19)0.03354 (12)
F10.19589 (8)0.59691 (12)0.63666 (4)0.0364 (2)
O10.50485 (9)0.72718 (13)0.56484 (5)0.0267 (2)
C10.31237 (13)0.81153 (18)0.52659 (7)0.0251 (3)
C20.37725 (12)0.79253 (18)0.46729 (7)0.0233 (3)
C30.34570 (12)0.80710 (18)0.39580 (7)0.0242 (3)
H30.26620.84290.37720.029*
C40.43212 (12)0.76849 (17)0.35187 (7)0.0221 (3)
C50.55052 (12)0.72200 (19)0.38149 (7)0.0258 (3)
H50.60990.69980.35150.031*
C60.58376 (13)0.7074 (2)0.45239 (7)0.0282 (3)
H60.66380.67570.47160.034*
C70.49417 (13)0.74160 (18)0.49375 (7)0.0244 (3)
C80.39147 (13)0.76675 (18)0.58301 (7)0.0244 (3)
C90.39863 (12)0.76923 (17)0.27537 (7)0.0218 (3)
C100.29923 (12)0.86819 (19)0.24410 (7)0.0266 (3)
H100.25410.94010.27210.032*
C110.26579 (13)0.8628 (2)0.17297 (7)0.0298 (3)
H110.19760.93000.15270.036*
C120.33101 (14)0.7602 (2)0.13126 (7)0.0327 (3)
H120.30760.75610.08250.039*
C130.43046 (14)0.6637 (2)0.16105 (7)0.0325 (3)
H130.47640.59460.13260.039*
C140.46343 (13)0.66746 (19)0.23219 (7)0.0265 (3)
H140.53150.59940.25200.032*
C150.38210 (13)0.75223 (17)0.65736 (7)0.0241 (3)
C160.47502 (13)0.81460 (18)0.70674 (7)0.0263 (3)
H160.54520.86680.69180.032*
C170.46672 (14)0.80178 (19)0.77690 (7)0.0299 (3)
H170.53020.84710.80970.036*
C180.36603 (14)0.7229 (2)0.79949 (7)0.0303 (3)
H180.36020.71530.84780.036*
C190.27373 (13)0.65489 (19)0.75195 (7)0.0284 (3)
H190.20500.59850.76710.034*
C200.28393 (13)0.67099 (18)0.68235 (7)0.0262 (3)
C210.07375 (16)0.7190 (3)0.48970 (9)0.0480 (4)
H21A0.10000.68260.44550.072*
H21B0.01100.75850.48180.072*
H21C0.08120.61670.52180.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (2)0.0392 (2)0.0296 (2)0.01220 (16)0.01019 (15)0.00356 (15)
F10.0344 (5)0.0430 (5)0.0304 (5)0.0135 (4)0.0006 (4)0.0033 (4)
O10.0262 (5)0.0344 (5)0.0195 (5)0.0012 (4)0.0030 (4)0.0012 (4)
C10.0285 (7)0.0251 (7)0.0223 (6)0.0019 (5)0.0058 (5)0.0005 (5)
C20.0254 (7)0.0215 (6)0.0234 (6)0.0003 (5)0.0041 (5)0.0007 (5)
C30.0247 (7)0.0249 (6)0.0231 (6)0.0027 (5)0.0036 (5)0.0005 (5)
C40.0249 (7)0.0194 (6)0.0222 (6)0.0018 (5)0.0038 (5)0.0001 (5)
C50.0234 (7)0.0299 (7)0.0250 (7)0.0019 (5)0.0059 (5)0.0004 (5)
C60.0222 (7)0.0361 (8)0.0259 (7)0.0013 (6)0.0017 (5)0.0016 (6)
C70.0271 (7)0.0249 (7)0.0210 (6)0.0033 (5)0.0026 (5)0.0003 (5)
C80.0272 (7)0.0227 (6)0.0241 (7)0.0016 (5)0.0060 (5)0.0004 (5)
C90.0232 (6)0.0210 (6)0.0216 (6)0.0036 (5)0.0040 (5)0.0008 (5)
C100.0264 (7)0.0268 (7)0.0267 (7)0.0008 (5)0.0040 (5)0.0009 (5)
C110.0290 (7)0.0319 (7)0.0274 (7)0.0024 (6)0.0008 (6)0.0020 (6)
C120.0381 (8)0.0391 (8)0.0203 (7)0.0000 (7)0.0017 (6)0.0001 (6)
C130.0350 (8)0.0389 (8)0.0248 (7)0.0032 (6)0.0083 (6)0.0048 (6)
C140.0255 (7)0.0301 (7)0.0242 (7)0.0021 (6)0.0043 (5)0.0014 (5)
C150.0294 (7)0.0217 (6)0.0214 (6)0.0016 (5)0.0037 (5)0.0004 (5)
C160.0289 (7)0.0245 (7)0.0258 (7)0.0012 (5)0.0042 (5)0.0001 (5)
C170.0349 (8)0.0290 (7)0.0247 (7)0.0006 (6)0.0008 (6)0.0027 (5)
C180.0409 (8)0.0300 (7)0.0208 (7)0.0061 (6)0.0072 (6)0.0014 (5)
C190.0321 (8)0.0268 (7)0.0279 (7)0.0030 (6)0.0105 (6)0.0038 (5)
C200.0284 (7)0.0237 (6)0.0258 (7)0.0002 (5)0.0011 (5)0.0000 (5)
C210.0322 (9)0.0693 (13)0.0410 (10)0.0020 (8)0.0013 (7)0.0052 (9)
Geometric parameters (Å, º) top
S1—C11.7464 (14)C10—H100.9500
S1—C211.8013 (19)C11—C121.383 (2)
F1—C201.3521 (16)C11—H110.9500
O1—C71.3748 (16)C12—C131.382 (2)
O1—C81.3840 (16)C12—H120.9500
C1—C81.3565 (19)C13—C141.3839 (19)
C1—C21.4420 (18)C13—H130.9500
C2—C71.3887 (19)C14—H140.9500
C2—C31.3922 (18)C15—C201.3882 (19)
C3—C41.3941 (18)C15—C161.3964 (19)
C3—H30.9500C16—C171.381 (2)
C4—C51.4114 (19)C16—H160.9500
C4—C91.4851 (18)C17—C181.384 (2)
C5—C61.3837 (19)C17—H170.9500
C5—H50.9500C18—C191.386 (2)
C6—C71.381 (2)C18—H180.9500
C6—H60.9500C19—C201.3760 (19)
C8—C151.4649 (18)C19—H190.9500
C9—C141.3956 (18)C21—H21A0.9800
C9—C101.4002 (19)C21—H21B0.9800
C10—C111.3847 (19)C21—H21C0.9800
C1—S1—C21101.49 (8)C10—C11—H11119.8
C7—O1—C8105.94 (10)C13—C12—C11119.49 (13)
C8—C1—C2106.37 (12)C13—C12—H12120.3
C8—C1—S1126.80 (11)C11—C12—H12120.3
C2—C1—S1126.37 (10)C12—C13—C14120.26 (13)
C7—C2—C3119.70 (13)C12—C13—H13119.9
C7—C2—C1105.77 (12)C14—C13—H13119.9
C3—C2—C1134.47 (13)C13—C14—C9121.28 (13)
C2—C3—C4119.23 (13)C13—C14—H14119.4
C2—C3—H3120.4C9—C14—H14119.4
C4—C3—H3120.4C20—C15—C16116.78 (12)
C3—C4—C5118.78 (12)C20—C15—C8122.31 (12)
C3—C4—C9120.45 (12)C16—C15—C8120.87 (13)
C5—C4—C9120.72 (12)C17—C16—C15121.21 (13)
C6—C5—C4122.81 (13)C17—C16—H16119.4
C6—C5—H5118.6C15—C16—H16119.4
C4—C5—H5118.6C16—C17—C18120.04 (14)
C7—C6—C5116.31 (13)C16—C17—H17120.0
C7—C6—H6121.8C18—C17—H17120.0
C5—C6—H6121.8C17—C18—C19120.26 (13)
O1—C7—C6126.40 (13)C17—C18—H18119.9
O1—C7—C2110.48 (12)C19—C18—H18119.9
C6—C7—C2123.11 (13)C20—C19—C18118.43 (13)
C1—C8—O1111.39 (11)C20—C19—H19120.8
C1—C8—C15133.94 (13)C18—C19—H19120.8
O1—C8—C15114.67 (12)F1—C20—C19117.78 (12)
C14—C9—C10117.60 (12)F1—C20—C15118.92 (12)
C14—C9—C4121.08 (12)C19—C20—C15123.24 (13)
C10—C9—C4121.30 (12)S1—C21—H21A109.5
C11—C10—C9120.98 (13)S1—C21—H21B109.5
C11—C10—H10119.5H21A—C21—H21B109.5
C9—C10—H10119.5S1—C21—H21C109.5
C12—C11—C10120.38 (13)H21A—C21—H21C109.5
C12—C11—H11119.8H21B—C21—H21C109.5
C21—S1—C1—C8112.43 (14)C3—C4—C9—C14154.56 (13)
C21—S1—C1—C276.40 (14)C5—C4—C9—C1422.97 (19)
C8—C1—C2—C71.73 (15)C3—C4—C9—C1023.80 (19)
S1—C1—C2—C7170.91 (11)C5—C4—C9—C10158.67 (13)
C8—C1—C2—C3175.29 (15)C14—C9—C10—C110.9 (2)
S1—C1—C2—C312.1 (2)C4—C9—C10—C11177.53 (13)
C7—C2—C3—C40.60 (19)C9—C10—C11—C120.6 (2)
C1—C2—C3—C4176.10 (14)C10—C11—C12—C130.4 (2)
C2—C3—C4—C52.27 (19)C11—C12—C13—C141.0 (2)
C2—C3—C4—C9175.31 (12)C12—C13—C14—C90.7 (2)
C3—C4—C5—C62.1 (2)C10—C9—C14—C130.3 (2)
C9—C4—C5—C6175.46 (13)C4—C9—C14—C13178.15 (13)
C4—C5—C6—C70.2 (2)C1—C8—C15—C2043.6 (2)
C8—O1—C7—C6177.46 (13)O1—C8—C15—C20136.50 (13)
C8—O1—C7—C21.10 (14)C1—C8—C15—C16138.77 (17)
C5—C6—C7—O1176.77 (13)O1—C8—C15—C1641.10 (17)
C5—C6—C7—C21.6 (2)C20—C15—C16—C172.4 (2)
C3—C2—C7—O1177.18 (11)C8—C15—C16—C17179.85 (13)
C1—C2—C7—O10.37 (15)C15—C16—C17—C181.3 (2)
C3—C2—C7—C61.4 (2)C16—C17—C18—C190.6 (2)
C1—C2—C7—C6178.99 (13)C17—C18—C19—C201.2 (2)
C2—C1—C8—O12.52 (15)C18—C19—C20—F1177.08 (12)
S1—C1—C8—O1170.08 (10)C18—C19—C20—C150.1 (2)
C2—C1—C8—C15177.61 (14)C16—C15—C20—F1175.28 (12)
S1—C1—C8—C159.8 (2)C8—C15—C20—F12.4 (2)
C7—O1—C8—C12.29 (15)C16—C15—C20—C191.9 (2)
C7—O1—C8—C15177.81 (11)C8—C15—C20—C19179.55 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the C9–C14 phenyl and 2-fluorophenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.823.682 (2)131
C14—H14···Cg2ii0.952.713.528 (2)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the C9–C14 phenyl and 2-fluorophenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.823.682 (2)130.7
C14—H14···Cg2ii0.952.713.528 (2)144.9
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Acknowledgements top

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

references
References top

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796–o4797.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3006.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.